The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A106153 Decimal expansion of arcsin(sqrt(1 - (e/Pi)^2)) (in degrees), lesser angle in right triangle with hypotenuse Pi and longer leg e. 1
 3, 0, 0, 8, 8, 0, 5, 2, 3, 8, 0, 8, 4, 5, 1, 7, 0, 2, 5, 8, 1, 0, 3, 4, 8, 0, 6, 5, 2, 6, 8, 3, 2, 9, 9, 6, 4, 8, 1, 3, 2, 0, 7, 7, 3, 0, 2, 0, 7, 5, 0, 6, 7, 7, 6, 1, 6, 2, 4, 0, 9, 1, 1, 3, 2, 4, 9, 2, 0, 5, 9, 7, 9, 4, 4, 0, 1, 6, 6, 5, 7, 2, 8, 2, 0, 0, 2, 9, 7, 6, 9, 2, 9, 3, 7, 1, 8, 1, 8, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Triangle with hypotenuse Pi, longer leg e and shorter leg close to Pi/2 (and angle close to 30 degrees). Cf. A096437: Decimal expansion of sqrt(Pi^2 - e^2). LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 FORMULA arcsin[sqrt(1-(e/Pi)^2) = 30.088052380845 degrees. MATHEMATICA RealDigits[N[ArcSin[Sqrt[Pi^2-E^2]/Pi]/Degree, 100]][[1]] PROG (PARI) asin(sqrt(Pi^2 - exp(2))/Pi)*(180/Pi) \\ G. C. Greubel, May 24 2017 CROSSREFS Cf. A096437. Sequence in context: A326397 A140577 A068606 * A166244 A022001 A265832 Adjacent sequences:  A106150 A106151 A106152 * A106154 A106155 A106156 KEYWORD cons,nonn AUTHOR Zak Seidov, May 07 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 08:06 EDT 2022. Contains 354005 sequences. (Running on oeis4.)