login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Weight distribution of [13,6,6]_3 ternary code p_{13}.
0

%I #7 Oct 04 2012 10:28:56

%S 1,0,156,494,78

%N Weight distribution of [13,6,6]_3 ternary code p_{13}.

%D J. H. Conway and N. J. A. Sloane, Low-dimensional lattices II: Subgroups of GL(n,Z), Proc. Royal Soc. A 419 (1988), 29-68.

%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1977, p. 695.

%H G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.

%H E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (<a href="http://neilsloane.com/doc/self.txt">Abstract</a>, <a href="http://neilsloane.com/doc/self.pdf">pdf</a>, <a href="http://neilsloane.com/doc/self.ps">ps</a>).

%e A_0 = 1, A_6 = 156, A_9 = 494, A_{12} = 78.

%K nonn,fini,full

%O 0,3

%A _N. J. A. Sloane_, May 07 2005

%E It would be good to have a set of generators (e.g. a MAGMA program to produce this code).

%E It would be good to also have the weight distribution of the dual code.