login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Next-to-central column of triangle in A059317.
6

%I #18 Sep 02 2019 01:53:42

%S 0,0,1,2,8,22,72,218,691,2158,6833,21612,68726,218892,699197,2237450,

%T 7174018,23038582,74097134,238625222,769407486,2483532218,8024499657,

%U 25951580444,83999410292,272098963300,882045339733,2861184745710,9286923094550,30161343633746

%N Next-to-central column of triangle in A059317.

%C Number of h steps in all paths in the first quadrant from (0,0) to (n-1,0) using steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0). Example: a(4)=8 because in the 6 (=A128720(3)) paths hhh, hH, Hh, hUD, UhD and UDh we have altogether 8 h-steps. a(n) = Sum_{k=0..n-1} k*A132277(n-1,k). - _Emeric Deutsch_, Sep 03 2007

%C Number of paths in the right half-plane from (0,0) to (n-1,1) consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0). Example: a(4)=8 because we have hhU, HU, hUh, Uhh, UH, DUU, UDU and UUD. Number of h-steps in all paths in the first quadrant from (0,0) to (n-1,0) using steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0). Example: a(4)=8 because in the 6 (=A128720(3)) paths from (0,0) to (3,0), namely, hhh, hH, Hh, hUD, UhD and UDh, we have altogether 8 h-steps. a(n) = Sum_{k=0..n-1} k*A132277(n-1,k). - _Emeric Deutsch_, Sep 03 2007

%H W. F. Klostermeyer, M. E. Mays, L. Soltes and G. Trapp, <a href="http://www.fq.math.ca/Scanned/35-4/klostermeyer.pdf">A Pascal rhombus</a>, Fibonacci Quarterly, 35 (1997), 318-328.

%H José L. Ramírez, <a href="http://arxiv.org/abs/1511.04577">The Pascal Rhombus and the Generalized Grand Motzkin Paths</a>, arXiv:1511.04577 [math.CO], 2015.

%F G.f.: (1 - z - z^2 - sqrt((1+z-z^2)*(1-3z-z^2)))/(2*sqrt((1+z-z^2)*(1-3z-z^2))). - _Emeric Deutsch_, Sep 03 2007

%F G.f.: (1-z-z^2)/(2*sqrt((1+z-z^2)*(1-3z-z^2))) - 1/2. - _Emeric Deutsch_, Sep 03 2007

%p g:=((1-z-z^2-sqrt((1+z-z^2)*(1-3*z-z^2)))*1/2)/sqrt((1+z-z^2)*(1-3*z-z^2)): gser:=series(g,z=0,33); seq(coeff(gser,z,n),n=0..29); # _Emeric Deutsch_, Sep 03 2007

%p g:=((1-z-z^2)*1/2)/sqrt((1+z-z^2)*(1-3*z-z^2))-1/2: gser:=series(g,z=0,33): seq(coeff(gser,z,n),n=0..30); # _Emeric Deutsch_, Sep 03 2007

%t t[0, 0] = t[1, 0] = t[1, 1] = t[1, 2] = 1;

%t t[n_ /; n >= 0, k_ /; k >= 0] /; k <= 2n := t[n, k] = t[n-1, k] + t[n-1, k-1] + t[n-1, k-2] + t[n-2, k-2];

%t t[n_, k_] /; n<0 || k<0 || k>2n = 0;

%t a[n_] := t[n-1, n-2];

%t Table[a[n], {n, 0, 29}] (* _Jean-François Alcover_, Aug 07 2018 *)

%Y Cf. A059317, A128720, A132277.

%K nonn

%O 0,4

%A _N. J. A. Sloane_, May 28 2005