login
A fractal transform of Pell numbers : a(1)=1 then if b(n)<k<=b(n+1) a(k)=b(n+1)-a(k-b(n)) where b(n)=A000129(n).
0

%I #4 Mar 30 2012 18:39:24

%S 1,1,4,4,1,11,11,8,8,11,1,1,28,28,25,25,28,18,18,21,21,18,28,28,1,1,4,

%T 4,1,69,69,66,66,69,59,59,62,62,59,69,69,42,42,45,45,42,52,52,49,49,

%U 52,42,42,69,69,66,66,69,1,1,4,4,1,11,11,8,8,11,1,1,168,168,165,165,168,158

%N A fractal transform of Pell numbers : a(1)=1 then if b(n)<k<=b(n+1) a(k)=b(n+1)-a(k-b(n)) where b(n)=A000129(n).

%C Graphs of a(k) for k=1 up to A000129(n) and n=1,2,3,... present fractal aspects.

%F Among many properties a(A000129(n))=1

%Y Cf. A105669 (fractal transform of Fibonacci's numbers), A105670 (fractal transform of powers of 2), A105672(fractal transform of powers of 3).

%K nonn

%O 1,3

%A _Benoit Cloitre_, May 05 2005