login
Primes p such that 14*p - 3 and 14*p + 3 are both primes.
1

%I #11 Sep 08 2022 08:45:17

%S 5,11,19,41,59,71,79,149,191,229,251,379,389,479,619,631,701,709,761,

%T 821,929,941,971,1031,1039,1091,1129,1229,1249,1279,1289,1301,1439,

%U 1571,1621,1721,2029,2081,2099,2251,2351,2411,2609,2621,2689,2711,2731,2741

%N Primes p such that 14*p - 3 and 14*p + 3 are both primes.

%H Michael De Vlieger, <a href="/A106016/b106016.txt">Table of n, a(n) for n = 1..10000</a>

%t Select[Prime[Range[400]], PrimeQ[14#+3]&&PrimeQ[14#-3]&]

%o (Magma) [p: p in PrimesUpTo(5000)|IsPrime(14*p+3) and IsPrime(14*p-3)] // _Vincenzo Librandi_, Jan 30 2011

%K nonn

%O 1,1

%A _Zak Seidov_, May 05 2005