login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105970
Number of ordered integral solutions of Descartes' equation 2(a^2 + b^2 + c^2 + d^2) = (a + b + c + d)^2 with a + b + c + d = 4n - 2.
2
1, 2, 1, 2, 4, 4, 3, 4, 5, 6, 8, 6, 5, 10, 7, 8, 14, 8, 9, 12, 11, 12, 12, 12, 14, 18, 13, 12, 22, 16, 15, 24, 12, 18, 24, 18, 19, 20, 24, 20, 28, 22, 16, 28, 23, 24, 32, 20, 25, 38
OFFSET
1,2
COMMENTS
This count includes only primitive quadruples, i.e., with gcd=1. There may also be nonprimitive quads, e.g., with n=5, 4n-2=18, we have 4 primitive quads (-1,2,6,11), (-2,3,7,10), (1,1,4,12), (-3,5,8,8) and also the nonprimitive (0,3,3,12) and (3,6,6,9). - Colin Mallows, May 11 2005
LINKS
R. L. Graham, J. C. Lagarias, C. L. Mallows, Allan Wilks, and C. H. Yan, Apollonian Circle Packings: Number Theory, arXiv:math/0009113 [math.NT], 2000-2003; J. Number Theory, 100 (2003), 1-45.
J. C. Lagarias, C. L. Mallows, and Allan Wilks, Beyond the Descartes Circle Theorem, arXiv:math/0101066 [math.MG], 2001.
J. C. Lagarias, C. L. Mallows, and Allan Wilks, Beyond the Descartes Circle Theorem, Amer. Math Monthly, 109 (2002), 338-361.
EXAMPLE
a(5) = 4 because we have the quadruples (1,1,4,12), (-1,2,6,11), (-2,3,7,10), (3,5,8,8).
MATHEMATICA
r[n_] := Reduce[a <= b <= c <= d && 2 (a^2 + b^2 + c^2 + d^2) == (a + b + c + d)^2 && a + b + c + d == 4 n - 2, {a, b, c, d}, Integers];
a[n_] := Count[{a, b, c, d} /. {ToRules[r[n]]}, sol_ /; GCD @@ sol == 1];
Reap[Do[an = a[n]; Print[n, " ", an]; Sow[an], {n, 1, 50}]][[2, 1]] (* Jean-François Alcover, Dec 14 2018 *)
CROSSREFS
Cf. A045864.
Sequence in context: A264569 A265601 A349816 * A133950 A241512 A360095
KEYWORD
nonn
AUTHOR
Colin Mallows, Apr 28 2005
EXTENSIONS
More terms from Colin Mallows, May 11 2005
STATUS
approved