Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Mar 08 2024 12:15:46
%S 1,5,8,23,47,116,257,605,1376,3191,7319,16892,38849,89525,206072,
%T 474647,1092863,2516804,5795393,13345805,30731984,70769399,162965351,
%U 375273548,864169601,1989990245,4582499048,10552469783,24299966927
%N Expansion of (1+4*x)/(1-x-3*x^2).
%C Inversion of the periodic sequence with initial period (1,4,-1,-4). Sequence appears to have the property: for m > n, if s divides both a(n) and a(m) then s also divides a(2*m-n). E.g., 23 divides both a(3) = 23 and a(25) = 1989990245; 23 also divides a(2*25-3) = a(47) = 185518234185384428 = (2)^2*(23)*(131)*(15393149202239).
%C Floretion Algebra Multiplication Program, FAMP Code: 1jesforseq[.5'k + .5k' + 2'kk' + 2e]
%H Vincenzo Librandi, <a href="/A105963/b105963.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,3).
%F a(n) = A006130(n) + 4*A006130(n-1) = A006130(n+1) + A006130(n-1). - _R. J. Mathar_, Dec 12 2009
%F From _Colin Barker_, May 01 2019: (Start)
%F a(n) = (2^(-1-n)*((1-sqrt(13))^n*(-9+sqrt(13)) + (1+sqrt(13))^n*(9+sqrt(13)))) / sqrt(13).
%F a(n) = a(n-1) + 3*a(n-2) for n > 1. (End)
%F a(n) = 3^((n-1)/2)*( sqrt(3)*Fibonacci(n+1, 1/sqrt(3)) + 4*Fibonacci(n, 1/sqrt(3)) ). - _G. C. Greubel_, Jan 15 2020
%p seq(coeff(series((1+4*x)/(1-x-3*x^2), x, n+1), x, n), n = 0 .. 40); # _G. C. Greubel_, Jan 15 2020
%t CoefficientList[Series[(1+4x)/(1-x-3x^2), {x,0,40}], x] (* _Vincenzo Librandi_, Jul 20 2013 *)
%t Table[Round[3^((n-1)/2)*(Sqrt[3]*Fibonacci[n+1, 1/Sqrt[3]] + 4*Fibonacci[n, 1/Sqrt[3]] )], {n,0,40}] (* _G. C. Greubel_, Jan 15 2020 *)
%o (PARI) Vec((1+4*x)/(1-x-3*x^2)+O(x^40)) \\ _Charles R Greathouse IV_, Sep 27 2012
%o (Magma) I:=[ 1,5]; [n le 2 select I[n] else Self(n-1)+3*Self(n-2): n in [1..40]]; // _Vincenzo Librandi_, Jul 20 2013
%o (SageMath)
%o def A077952_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( (1+4*x)/(1-x-3*x^2) ).list()
%o A077952_list(30) # _G. C. Greubel_, Jan 15 2020
%o (GAP) a:=[1,5];; for n in [3..40] do a[n]:=a[n-1]+3*a[n-2]; od; a; # _G. C. Greubel_, Jan 15 2020
%Y Cf. A006130, A105476, A274977.
%K nonn,easy
%O 0,2
%A _Creighton Dement_, Apr 28 2005