Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Mar 31 2024 14:59:14
%S 5,7,13,23,29,37,47,53,61,71,79,101,103,149,167,173,181,191,197,199,
%T 239,263,269,271,293,311,317,349,359,367,373,383,389,421,461,463,479,
%U 487,503,509,541,557,599,607,613,647,653,661,677,701,709,719,743,751,757,773,797
%N Primes for which -2 is a primitive root.
%C Also primes for which (p-1)/2 (==-1/2 mod p) is a primitive root. [_Joerg Arndt_, Jun 27 2011]
%H Joerg Arndt, <a href="/A105874/b105874.txt">Table of n, a(n) for n = 1..10000</a>
%H L. J. Goldstein, <a href="http://www.jstor.org/stable/2316895">Density questions in algebraic number theory</a>, Amer. Math. Monthly, 78 (1971), 342-349.
%H <a href="/index/Pri#primes_root">Index entries for primes by primitive root</a>
%F Let a(p,q)=sum(n=1,2*p*q,2*cos(2^n*Pi/((2*q+1)*(2*p+1)))). Then 2*p+1 is a prime belonging to this sequence when a(p,1)==1. - _Gerry Martens_, May 21 2015
%p with(numtheory); f:=proc(n) local t1,i,p; t1:=[]; for i from 1 to 500 do p:=ithprime(i); if order(n,p) = p-1 then t1:=[op(t1),p]; fi; od; t1; end; f(-2);
%t pr=-2; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &] (* _N. J. A. Sloane_, Jun 01 2010 *)
%t a[p_,q_]:=Sum[2 Cos[2^n Pi/((2 q+1) (2 p+1))], {n,1,2 q p}];
%t Select[Range[400], Reduce[a[#, 1] == 1, Integers] &];
%t 2 % + 1 (* _Gerry Martens_, Apr 28 2015 *)
%o (PARI) forprime(p=3,10^4,if(p-1==znorder(Mod(-2,p)),print1(p", "))); /* _Joerg Arndt_, Jun 27 2011 */
%o (Python)
%o from sympy import n_order, nextprime
%o from itertools import islice
%o def A105874_gen(startvalue=3): # generator of terms >= startvalue
%o p = max(startvalue-1,2)
%o while (p:=nextprime(p)):
%o if n_order(-2,p) == p-1:
%o yield p
%o A105874_list = list(islice(A105874_gen(),20)) # _Chai Wah Wu_, Aug 11 2023
%Y Cf. A001122, A019334-A019338, A001913, A019339-A019367 etc., A105875-A105914.
%K nonn
%O 1,1
%A _N. J. A. Sloane_, Apr 24 2005