login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = sigma(n) mod 4.
11

%I #29 Nov 07 2017 18:31:16

%S 1,3,0,3,2,0,0,3,1,2,0,0,2,0,0,3,2,3,0,2,0,0,0,0,3,2,0,0,2,0,0,3,0,2,

%T 0,3,2,0,0,2,2,0,0,0,2,0,0,0,1,1,0,2,2,0,0,0,0,2,0,0,2,0,0,3,0,0,0,2,

%U 0,0,0,3,2,2,0,0,0,0,0,2,1,2,0,0,0,0,0,0,2,2,0,0,0,0,0,0,2,3,0,1,2,0,0,2,0

%N a(n) = sigma(n) mod 4.

%H Antti Karttunen, <a href="/A105824/b105824.txt">Table of n, a(n) for n = 1..16384</a>

%H <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>

%F a(n) = A010873(A000203(n)). - _Antti Karttunen_, Nov 07 2017

%p A105824:= n-> (numtheory[sigma](n) mod 4):

%p seq (A105824(n), n=1..105); # _Jani Melik_, Jan 26 2011

%t Table[Mod[DivisorSigma[1, n], 4], {n, 100}] (* _Wesley Ivan Hurt_, Nov 07 2017 *)

%o (PARI) a(n)=sigma(n)%4

%Y Cf. A000203, A010873, A248150, A072461, A072462, A191217.

%Y Sequences sigma(n) mod k: A053866 (k=2), A074941 (k=3), A105824 (k=4), A105825 (k=5), A084301 (k=6), A105826 (k=7), A105827 (k=8).

%K easy,nonn

%O 1,2

%A _Shyam Sunder Gupta_, May 05 2005