Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Aug 03 2024 11:52:58
%S 1,1,1,1,23,18,1,1,1,1,1,1,2,1,22,2,1,53,1,1,10,1,1,17,2,4,1,27,1,2,
%T 422,3,3,13,12,5,28,1,3,1,2,1,3,2,4,6,6,3,5,50,1,1,6,3,2,1,118,2,1,1,
%U 2,6,1,4,1,1,5,2,3,3,16,1,4,6,2,2,22,4,3,10,1,1,49,5,1,1,12,1,1,3,13,3,10,1,2
%N Continued fraction expansion of the Fibonacci nested radical (A105817).
%C The decimal expansion of this is A105817. "It was discovered by T. Vijayaraghavan that the infinite radical, sqrt( a_1 + sqrt( a_2 + sqrt ( a_3 + sqrt( a_4 + ... where a_n => 0, will converge to a limit if and only if the limit of (ln a_n)/2^n exists." [Clawson, 229; Sloane]. We know the asymptotic limit of Fibonacci numbers is Phi^n (Binet expansion) and that Phi^n < 2^n and hence that the Fibonacci Nested Radical converges.
%C Clawson misstates Vijayaraghavan's theorem. Vijayaraghavan proved that for a_n > 0, the infinite radical sqrt(a_1 + sqrt(a_2 + sqrt(a_3 + ...))) converges if and only if limsup (log a_n)/2^n < infinity. (For example, suppose a_n = 1 if n is odd, and a_n = e^2^n if n is even. Then (log a_n)/2^n = 0, 1, 0, 1, 0, 1, ... for n >= 1, so the limit does not exist. However, limsup (log a_n)/2^n = 1 and the infinite radical converges.) - _Jonathan Sondow_, Mar 25 2014
%D Calvin C. Clawson, "Mathematical Mysteries, the beauty and magic of numbers," Perseus Books, Cambridge, Mass., 1996, pages 142 & 229.
%D S. R. Finch, "Analysis of a Radical Expansion." Section 1.2.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, p. 8, 2003.
%H Jonathan M. Borwein and G. de Barra, <a href="http://www.jstor.org/stable/2324426">Nested Radicals</a>, Amer. Math. Monthly 98, 735-739, 1991.
%H J. Sondow and P. Hadjicostas, <a href="http://dx.doi.org/10.1016/j.jmaa.2006.09.081">The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant</a>, J. Math. Anal. Appl., 332 (2007), 292-314; see pp. 305-306.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/NestedRadicalConstant.html">Nested Radical Constant.</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Tirukkannapuram_Vijayaraghavan">Tirukkannapuram Vijayaraghavan</a>
%F Sqrt(1 + Sqrt(1 + Sqrt(2 + Sqrt(3 + Sqrt(5 + ... + Sqrt(Fibonacci(n) = A000045)))).
%e 1.66198246232781155796760608181513129505616756246503500829906806743...
%t f[n_] := Block[{k = n, s = 0}, While[k > 0, s = Sqrt[s + Fibonacci[k]]; k-- ]; s]; ContinuedFraction[ f[46], 95] (* _Robert G. Wilson v_, Apr 21 2005 *)
%Y Cf. A000045; A072449, A083869, A099874, A099876, A099877, A099878, A099879, A105546, A105548, A105815, A105816, A105817, A239349 for other nested radicals.
%K cofr,nonn
%O 0,5
%A _Jonathan Vos Post_, Apr 21 2005
%E Offset changed by _Andrew Howroyd_, Aug 03 2024