login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105777
Trajectory of 1 under the morphism 1->{1,2,2,2,1}, 2->{4,3,3,3,4}, 3->{2,1,1,1,2}, 4->{3,4,4,4,3}.
1
1, 2, 2, 2, 1, 4, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 4, 1, 2, 2, 2, 1, 3, 4, 4, 4, 3, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 4, 4, 4, 3, 3, 4, 4, 4, 3, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 4, 4, 4, 3, 3, 4, 4, 4, 3, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 4, 4, 4, 3, 1, 2, 2, 2, 1
OFFSET
0,2
COMMENTS
Edgar-Peano substitution of 4 symbols taken 5 at a time: characteristic polynomial -x^5 + 5*x^3 + 5*x^2 - 25*x.
LINKS
F. M. Dekking, Recurrent sets, Advances in Mathematics, 44 (1982), 78-104.
G. A. Edgar and Jeffery Golds, A Fractal Dimension Estimate for a Graph-Directed IFS of Non-Similarities, arXiv:math/9806039 [math.CA], 1991
MATHEMATICA
s[1] = {1, 2, 2, 2, 1}; s[2] = {4, 3, 3, 3, 4}; s[3] = {2, 1, 1, 1, 2}; s[4] = {3, 4, 4, 4, 3}; s[5] = {} t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]]; aa = p[3]
PROG
(PARI) {a(n)=local(A); if(n<1, 0, A=[1]; while(length(A)<n, A=concat(vector(length(A), k, [1, 2, 2, 2, 1; 4, 3, 3, 3, 4; 2, 1, 1, 1, 2; 3, 4, 4, 4, 3][A[k], ]))); A[n])} /* Michael Somos, May 16 2005 */
CROSSREFS
Sequence in context: A089400 A239209 A180824 * A014572 A071458 A247719
KEYWORD
nonn
AUTHOR
Roger L. Bagula, May 04 2005
STATUS
approved