

A105777


Trajectory of 1 under the morphism 1>{1,2,2,2,1}, 2>{4,3,3,3,4}, 3>{2,1,1,1,2}, 4>{3,4,4,4,3}.


0



1, 2, 2, 2, 1, 4, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 4, 1, 2, 2, 2, 1, 3, 4, 4, 4, 3, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 4, 4, 4, 3, 3, 4, 4, 4, 3, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 4, 4, 4, 3, 3, 4, 4, 4, 3, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 4, 4, 4, 3, 1, 2, 2, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

EdgarPeano substitution of 4 symbols taken 5 at a time: characteristic polynomial x^5 + 5*x^3 + 5*x^2  25*x.


LINKS

Table of n, a(n) for n=0..104.
F. M. Dekking, Recurrent sets, Advances in Mathematics, 44 (1982), 78104.
G. A. Edgar and Jeffery Golds, A Fractal Dimension Estimate for a GraphDirected IFS of NonSimilarities, arXiv:math/9806039 [math.CA], 1991
Index entries for sequences that are fixed points of mappings


MATHEMATICA

s[1] = {1, 2, 2, 2, 1}; s[2] = {4, 3, 3, 3, 4}; s[3] = {2, 1, 1, 1, 2}; s[4] = {3, 4, 4, 4, 3}; s[5] = {} t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n  1]]; aa = p[3]


PROG

(PARI) {a(n)=local(A); if(n<1, 0, A=[1]; while(length(A)<n, A=concat(vector(length(A), k, [1, 2, 2, 2, 1; 4, 3, 3, 3, 4; 2, 1, 1, 1, 2; 3, 4, 4, 4, 3][A[k], ]))); A[n])} /* Michael Somos, May 16 2005 */


CROSSREFS

Sequence in context: A089400 A239209 A180824 * A014572 A071458 A247719
Adjacent sequences: A105774 A105775 A105776 * A105778 A105779 A105780


KEYWORD

nonn


AUTHOR

Roger L. Bagula, May 04 2005


STATUS

approved



