login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to use the elements of {1,..,k}, 0<=k<=2n, once each to form a collection of n (possibly empty) lists, each of length at most 2.
4

%I #22 May 15 2022 03:49:54

%S 1,4,23,216,2937,52108,1136591,29382320,877838673,29753600404,

%T 1127881002535,47278107653768,2171286661012617,108417864555606300,

%U 5847857079417024031,338841578119273846112

%N Number of ways to use the elements of {1,..,k}, 0<=k<=2n, once each to form a collection of n (possibly empty) lists, each of length at most 2.

%H Seiichi Manyama, <a href="/A105747/b105747.txt">Table of n, a(n) for n = 0..365</a>

%H R. A. Proctor, <a href="http://arXiv.org/abs/math.CO/0606404">Let's Expand Rota's Twelvefold Way for Counting Partitions!</a> arXiv math.CO.0606404.

%H <a href="/index/Par#partN">Index entries for related partition-counting sequences</a>

%F a(n) = Sum_{0<=i<=k<=n} (k+i)!/i!/(k-i)!.

%F a(n+3) = (4*n+11)*a(n+2) - (4*n+9)*a(n+1) - a(n) - _Benoit Cloitre_, May 26 2006

%F G.f.: 1/(1-x)/Q(0), where Q(k)= 1 - x - 2*x*(k+1)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, May 17 2013

%F a(n) ~ 2^(2*n + 1/2) * n^n / exp(n - 1/2). - _Vaclav Kotesovec_, May 15 2022

%e a(2)=23:

%e {(),()},

%e {(),(1)},

%e {(),(1,2)},

%e {(),(2,1)},

%e {(1),(2)},

%e {(1),(2,3)},

%e {(1),(3,2)},

%e ...,

%e {(1,4),(2,3)},

%e {(1,4),(3,2)},

%e {(4,1),(2,3)},

%e {(4,1),(3,2)}.

%t Table[Sum[(k+i)!/i!/(k-i)!, {k, 0, n}, {i, 0, k}], {n, 0, 20}]

%Y First differences: A001517.

%Y Replace "collection" by "sequence": A082765.

%Y Replace "lists" by "sets": A105748.

%K nonn,easy

%O 0,2

%A Robert A. Proctor (www.math.unc.edu/Faculty/rap/), Apr 18 2005