login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A "fractal" transform of the Fibonacci numbers F(n)=A000045(n): a(1)=1, then for n>1 if F(n) < k < F(n+1) we have a(k) = F(n+1)-a(k-F(n)) and when k = F(n+1) we force a(F(n+1)) = F(n+1) + (1+(-1)^n)*F(n).
6

%I #11 Jun 17 2022 03:43:05

%S 1,2,2,4,7,7,6,6,12,11,11,9,20,20,19,19,17,14,14,15,15,33,32,32,30,27,

%T 27,28,28,22,23,23,25,54,54,53,53,51,48,48,49,49,43,44,44,46,35,35,36,

%U 36,38,41,41,40,40,88,87,87,85,82,82,83,83,77,78,78,80,69,69,70,70,72

%N A "fractal" transform of the Fibonacci numbers F(n)=A000045(n): a(1)=1, then for n>1 if F(n) < k < F(n+1) we have a(k) = F(n+1)-a(k-F(n)) and when k = F(n+1) we force a(F(n+1)) = F(n+1) + (1+(-1)^n)*F(n).

%C Let b denote the sequence of n such that a(n)=a(n+1), then b(n)=floor(tau^2*n) where tau=(1+sqrt(5))/2.

%C Missing numbers are the nearest integer to tau^2*n, n>=0 (cf. A004937).

%C #{k>0 : a(k) = k} = infinity.

%C This kind of "fractal" transform can be applied to any increasing monotonic sequence giving true fractal properties for sequences = (m^n)_{n>0} with m integer >=2, specially when m is odd (cf. A093347, A093348).

%H Amiram Eldar, <a href="/A105669/b105669.txt">Table of n, a(n) for n = 1..10000</a>

%F F(2n) = F(2n+1) - F(n+1)^2 + F(n)*F(n-1) for n>0.

%F a(F(2n-1)) = F(2n)-1 for n>1.

%F 1/tau < a(n)/n < tau.

%e For 5 = F(5) < k <= F(6) = 8 we get a(6) = 8-a(6-5) = 8-a(1) = 7.

%e a(7) = 8-a(7-5) = 8-a(2) = 6.

%e a(8) = 8-a(8-5) = 8-a(3) = 6.

%t a[n_] := a[n] = If[n <= 1, 1, Fibonacci[(k = Floor[Log[Sqrt[5]*n]/Log[GoldenRatio]]) + 1] - a[n - Fibonacci[k]]]; Array[a, 100] (* _Amiram Eldar_, Jun 17 2022 *)

%o (PARI) f=(1+sqrt(5))/2; a(n)=if(n<2,1,fibonacci(floor(log(sqrt(5)*n)/log(f))+1)-a(n-fibonacci(floor(log(sqrt(5)*n)/log(f)))))

%Y Cf. A000045, A001622, A004937, A105670, A105672, A093347, A093348.

%K nonn

%O 1,2

%A _Benoit Cloitre_, May 03 2005