login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = a(n-2) + a(n-3) - a(n-5).
8

%I #30 Apr 17 2023 06:17:52

%S 0,1,2,1,3,3,3,4,5,4,6,6,6,7,8,7,9,9,9,10,11,10,12,12,12,13,14,13,15,

%T 15,15,16,17,16,18,18,18,19,20,19,21,21,21,22,23,22,24,24,24,25,26,25,

%U 27,27,27,28,29,28,30,30,30,31,32,31,33,33,33,34,35,34,36,36,36,37,38,37

%N a(n) = a(n-2) + a(n-3) - a(n-5).

%C a(n+6) = a(n) + 3; convolution of A000035(n) with A010872(n). - _Reinhard Zumkeller_, Mar 08 2009

%C Let B be the periodic sequence that repeats (1,2,1,3,3,3,4,5,4,6,6,6). Then the sequence a(1), a(2), ... is obtained by adding 6*(i-1) to every term of the i-th period of B.. - _Vladimir Shevelev_, May 31 2011

%C Also for n > 0: number of partitions of n into parts 1 or 2 with distinct multiplicities, cf. A211858, A098859. - _Reinhard Zumkeller_, Dec 27 2012

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,1,0,-1).

%F G.f.: x*(1+2*x)/((1-x^2)*(1-x^3)).

%F a(n) = Sum_{k=0..n} (k mod 3)*(1-(-1)^(n+k-1))/2}.

%F a(n) = Sum_{k=0..floor(n/2)} (n-2k mod 3).

%F a(n) = 1 + floor(n/2) - [3 divides n]. - _Ralf Stephan_, Nov 15 2010

%F a(n) = A103221(n-1) + 2*A103221(n-2). - _R. J. Mathar_, Jun 30 2011

%F a(n) = floor(n/2) + floor((n+2)/3) - floor(n/3). - _Mircea Merca_, May 20 2013

%o (PARI) a(n)=1+floor(n/2)-if(n%3==0,1,0)

%Y Cf. A174257. - _Vladimir Shevelev_, May 31 2011

%K easy,nonn

%O 0,3

%A _Paul Barry_, Apr 16 2005