Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jun 12 2023 09:20:42
%S 1,1,1,2,1,1,4,3,1,1,9,7,4,1,1,21,19,10,5,1,1,51,51,31,13,6,1,1,127,
%T 141,91,45,16,7,1,1,323,393,276,141,61,19,8,1,1,835,1107,834,461,201,
%U 79,22,9,1,1,2188,3139,2535,1485,701,271,99,25,10,1,1,5798,8953,7711,4803,2381,1001,351,121,28,11,1,1
%N Triangle, read by rows, where the g.f. A(x,y) satisfies the equation: A(x,y) = 1/(1-x*y) + x*A(x,y) + x^2*A(x,y)^2.
%C Column 0 is A001006 (Motzkin numbers). Column 1 is A002426 (Central trinomial coefficients). Row sums form A105633 (also equal to A057580?).
%C T(n,k) is the number of UUDU-avoiding Dyck paths of semilength n+1 with k UDUs, where U = (1,1) is an upstep and D = (1,-1) is a downstep. For example, T(3,1) = 3 counts UDUUUDDD, UDUUDDUD, UUDDUDUD. - _David Callan_, Nov 25 2021
%F G.f. for column k (k>0): Sum_{j=0..k-1} C(k-1, j)*A000108(j)*x^(2*j)/(1-2*x-3*x^2)^(j+1/2), where A000108(j) = binomial(2*j, j)/(j+1) is the j-th Catalan number.
%F G.f.: A(x, y) = (1-x - sqrt((1-x)^2 - 4*x^2/(1-x*y)))/(2*x^2).
%e Triangle begins:
%e 1;
%e 1, 1;
%e 2, 1, 1;
%e 4, 3, 1, 1;
%e 9, 7, 4, 1, 1;
%e 21, 19, 10, 5, 1, 1;
%e 51, 51, 31, 13, 6, 1, 1;
%e 127, 141, 91, 45, 16, 7, 1, 1;
%e 323, 393, 276, 141, 61, 19, 8, 1, 1;
%e 835, 1107, 834, 461, 201, 79, 22, 9, 1, 1; ...
%e Let G = (1-2*x-3*x^2), then the column g.f.s are:
%e k=1: 1/sqrt(G)
%e k=2: (G + (1)*1*x^2)/sqrt(G^3)
%e k=3: (G^2 + (1)*2*x^2*G + (2)*1*x^4)/sqrt(G^5)
%e k=4: (G^3 + (1)*3*x^2*G^2 + (2)*3*x^4*G + (5)*1*x^6)/sqrt(G^7)
%e k=5: (G^4 + (1)*4*x^2*G^3 + (2)*6*x^4*G^2 + (5)*4*x^6*G + (14)*1*x^8)/sqrt(G^9)
%e and involve Catalan numbers and binomial coefficients.
%e MATRIX INVERSE.
%e The matrix inverse starts
%e 1;
%e -1, 1;
%e -1, -1, 1;
%e 0, -2, -1, 1;
%e 2, -1, -3, -1, 1;
%e 6, 2, -2, -4, -1, 1;
%e 13, 10, 2, -3, -5, -1, 1;
%e 18, 32, 14, 2, -4, -6, -1, 1;
%e -12, 76, 56, 18, 2, -5, -7, -1, 1;
%e -206, 108, 162, 86, 22, 2, -6, -8, -1, 1;
%e - _R. J. Mathar_, Apr 08 2013
%p A105632 := proc(n,k)
%p (1-x-sqrt((1-x)^2-4*x^2/(1-x*y)))/2/x^2 ;
%p coeftayl(%,x=0,n) ;
%p coeftayl(%,y=0,k) ;
%p end proc: # _R. J. Mathar_, Apr 08 2013
%t T[n_, k_] := SeriesCoefficient[(1 - x - Sqrt[(1 - x)^2 - 4*x^2/(1 - x*y)])/(2*x^2), {x, 0, n}] // SeriesCoefficient[#, {y, 0, k}]&;
%t Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jun 10 2023 *)
%o (PARI) {T(n,k)=local(A=1+x+x*y+x*O(x^n)+y*O(y^k)); for(i=1,n,A=1/(1-x*y)+x*A+x^2*A^2);polcoeff(polcoeff(A,n,x),k,y)}
%o (PARI) {T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k));polcoeff(polcoeff( 2/(1-X+sqrt((1-X)^2-4*X^2/(1-X*Y)))/(1-X*Y),n,x),k,y)}
%Y Cf. A105633 (row sums), A001006 (column 0), A002426 (column 1).
%K nonn,tabl
%O 0,4
%A _Paul D. Hanna_, Apr 17 2005