login
A105619
Matrix inverse of triangle A105615.
2
1, -2, 1, -2, -4, 1, -10, -2, -6, 1, -74, -10, -2, -8, 1, -706, -74, -10, -2, -10, 1, -8162, -706, -74, -10, -2, -12, 1, -110410, -8162, -706, -74, -10, -2, -14, 1, -1708394, -110410, -8162, -706, -74, -10, -2, -16, 1, -29752066, -1708394, -110410, -8162, -706, -74, -10, -2, -18, 1
OFFSET
0,2
COMMENTS
Except for the initial few terms, all columns are equal to negative A000698 (related to double factorials).
EXAMPLE
Triangle begins:
1;
-2,1;
-2,-4,1;
-10,-2,-6,1;
-74,-10,-2,-8,1;
-706,-74,-10,-2,-10,1;
-8162,-706,-74,-10,-2,-12,1;
-110410,-8162,-706,-74,-10,-2,-14,1;
-1708394,-110410,-8162,-706,-74,-10,-2,-16,1; ...
PROG
(PARI) T(n, k)=if(n<k || k<0, 0, matrix(n+1, n+1, m, j, if(m>=j, if(m==j, 1, if(m==j+1, -2*j, polcoeff(1/sum(i=0, m-j, (2*i)!/i!/2^i*x^i)+O(x^m), m-j)))))[n+1, k+1])
CROSSREFS
Cf. A105615, A000698, A105620 (matrix square-root).
Sequence in context: A119765 A303325 A077901 * A302212 A302460 A303242
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Apr 16 2005
STATUS
approved