login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nonzero quadratic residues (mod n) (cf. A000224).
8

%I #28 Sep 20 2017 02:51:41

%S 0,1,1,1,2,3,3,2,3,5,5,3,6,7,5,3,8,7,9,5,7,11,11,5,10,13,10,7,14,11,

%T 15,6,11,17,11,7,18,19,13,8,20,15,21,11,11,23,23,7,21,21,17,13,26,21,

%U 17,11,19,29,29,11,30,31,15,11,20,23,33,17,23,23,35,11,36,37,21,19,23

%N Number of nonzero quadratic residues (mod n) (cf. A000224).

%H Reinhard Zumkeller, <a href="/A105612/b105612.txt">Table of n, a(n) for n = 1..10000</a>

%H S. R. Finch and Pascal Sebah, <a href="https://arxiv.org/abs/math/0604465">Squares and Cubes Modulo n</a>, arXiv:math/0604465 [math.NT], 2006-2016.

%H E. J. F. Primrose, <a href="http://dx.doi.org/10.2307/3617445">The number of quadratic residues mod m</a>, Math. Gaz. v. 61 (1977) n. 415, 60-61.

%H W. D. Stangl, <a href="http://www.jstor.org/stable/2690536">Counting Squares in Z_n</a>, Mathematics Magazine, pp. 285-289, Vol. 69 No. 4 (October 1996).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/QuadraticResidue.html">Quadratic Residue</a>

%F a(n) = A000224(n) - 1.

%t a[n_]:=Count[Union[Mod[Range[Floor[n/2]]^2,n]],_?Positive];Table[a[n],{n,1,80}] (* _Jean-François Alcover_, Feb 09 2011 *)

%o (PARI) /* based on code by _Franklin T. Adams-Watters_, see A000224 */

%o A105612(n)=local(v,i);v=vector(n,i,0);for(i=0,floor(n/2),v[i^2%n+1]=1);sum(i=2,n,v[i]) \\ _Michael B. Porter_, May 04 2010

%o (PARI) a(n)=my(f=factor(n)); prod(i=1, #f[, 1], if(f[i, 1]==2, 2^f[1, 2]\6+2, f[i, 1]^(f[i, 2]+1)\(2*f[i, 1]+2)+1))-1 \\ _Charles R Greathouse IV_, Sep 10 2013

%o (Haskell)

%o a105612 = (subtract 1) . a000224 -- _Reinhard Zumkeller_, Aug 01 2012

%K nonn

%O 1,5

%A _Eric W. Weisstein_, Apr 15 2005