login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1, and for n >= 2, a(n) = prime(bigomega(n)), where prime(n) = A000040(n) and bigomega(n) = A001222(n).
16

%I #31 Jun 15 2017 02:52:11

%S 1,2,2,3,2,3,2,5,3,3,2,5,2,3,3,7,2,5,2,5,3,3,2,7,3,3,5,5,2,5,2,11,3,3,

%T 3,7,2,3,3,7,2,5,2,5,5,3,2,11,3,5,3,5,2,7,3,7,3,3,2,7,2,3,5,13,3,5,2,

%U 5,3,5,2,11,2,3,5,5,3,5,2,11,7,3,2,7,3,3,3,7,2,7,3,5,3,3,3,13,2,5,5,7

%N a(1) = 1, and for n >= 2, a(n) = prime(bigomega(n)), where prime(n) = A000040(n) and bigomega(n) = A001222(n).

%C From _Antti Karttunen_, Jul 21 2014: (Start)

%C a(n) divides A122111(n), A242424(n), A243072(n), A243073(n) because a(n) divides all the terms in column n of A243070.

%C a(2n-1) divides A243505(n) and a(2n-1)^2 divides A122111(2n-1).

%C (End)

%H Antti Karttunen, <a href="/A105560/b105560.txt">Table of n, a(n) for n = 1..10000</a>

%F a(1) = 1, and for n >= 2, a(n) = A000040(A001222(n)).

%F From _Antti Karttunen_, Jul 21 2014: (Start)

%F a(n) = A008578(1 + A001222(n)).

%F a(n) = A006530(A122111(n)).

%F a(n) = A122111(n) / A122111(A064989(n)).

%F a(2n-1) = A122111(2n-1) / A243505(n).

%F a(n) = A242424(n) / A064989(n).

%F (End)

%t Table[Prime[Sum[FactorInteger[n][[i,2]],{i,1,Length[FactorInteger[n]]}]],{n,2,40}] (* _Stefan Steinerberger_, May 16 2007 *)

%o (PARI) d(n) = for(x=2,n,print1(prime(bigomega(x))","))

%o (Python)

%o from sympy import prime, primefactors

%o def a001222(n): return 0 if n==1 else a001222(n/primefactors(n)[0]) + 1

%o def a(n): return 1 if n==1 else prime(a001222(n)) # _Indranil Ghosh_, Jun 15 2017

%Y Cf. A000040, A001222, A006530, A008578, A243070, A242424, A243072, A243073, A122111, A243505.

%K easy,nonn

%O 1,2

%A _Cino Hilliard_, May 03 2005

%E a(1) = 1 prepended by _Antti Karttunen_, Jul 21 2014