Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 May 25 2017 10:34:39
%S 2,3,3,5,3,7,3,7,5,7,3,13,3,7,7,11,3,13,3,13,7,7,3,19,5,7,7,13,3,19,3,
%T 13,7,7,7,23,3,7,7,19,3,19,3,13,13,7,3,29,5,13,7,13,3,19,7,19,7,7,3,
%U 37,3,7,13,17,7,19,3,13,7,19,3,37,3,7,13,13,7,19,3,29,11,7,3,37,7,7,7,19,3
%N Let d = number of divisors of n; a(n) = d-th prime.
%H Antti Karttunen, <a href="/A105555/b105555.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A000040(A000005(n)). - _Antti Karttunen_, May 25 2017
%e n = 6 has 4 divisors, prime(4) = 7, so a(6) = 7.
%t Prime[DivisorSigma[0,Range[90]]] (* _Harvey P. Dale_, Jul 27 2011 *)
%o (PARI) d(n) = for(x=1,n,print1(prime(numdiv(x))","))
%o (Python)
%o from sympy import prime, divisor_count
%o def a(n): return prime(divisor_count(n)) # _Indranil Ghosh_, May 25 2017
%Y Cf. A000005, A000040, A105560, A105561.
%K easy,nonn
%O 1,1
%A _Cino Hilliard_, May 03 2005