Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Nov 20 2024 23:44:33
%S 1,4,1,8,9,7,0,5,4,6,0,4,1,6,3,9,2,2,8,1,2,8,5,1,6,1,7,1,0,2,5,5,3,0,
%T 8,3,0,0,7,7,8,1,7,5,8,7,2,8,4,6,4,0,7,2,3,7,8,1,3,0,0,2,9,3,6,3,4,4,
%U 1,6,2,6,7,5,9,9,3,1,1,6,0,9,4,4,1,9,1,8,6,1,6,3,4,2,4,6,5,1,8,1,1,7,5,2,2
%N Decimal expansion of arctan(1/7).
%H D. H. Lehmer, <a href="https://www.maa.org/sites/default/files/pdf/pubs/amm_supplements/Monthly_Reference_7.pdf">On Arccotangent Relations for π</a>, The American Mathematical Monthly, Vol. 45, No. 10 (Dec., 1938), pp. 657-664.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Machin-LikeFormulas.html">Machin-Like Formulas</a>.
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%F 2*A073000 - arctan(1/7) = 2*A105531 + arctan(1/7) = Pi/4.
%F 5*arctan(1/7) + 2*arctan(3/79) = Pi/4. - _Frank Ellermann_, Mar 01 2020
%F Equals arcsin(1/(5*sqrt(2))) = arccos(7/(5*sqrt(2))). - _Amiram Eldar_, Jul 11 2023
%e 0.1418970546041639228128516171...
%t RealDigits[ArcTan[1/7],10,120][[1]] (* _Harvey P. Dale_, Oct 03 2012 *)
%o (PARI) atan(1/7) \\ _Michel Marcus_, Mar 01 2020
%Y Cf. A073000, A105531.
%K cons,nonn
%O 0,2
%A Bryan Jacobs (bryanjj(AT)gmail.com), Apr 12 2005