Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Mar 18 2023 10:36:08
%S 0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,
%T 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
%U 4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7
%N Number of times 8 is the leading digit of the first n+1 Fibonacci numbers in decimal representation.
%H Winston de Greef, <a href="/A105518/b105518.txt">Table of n, a(n) for n = 0..10000</a>
%F a(n) = #{k: A008963(k) = 8 and 0<=k<=n};
%F a(A105508(n)) = a(A105508(n) - 1) + 1;
%F n = A105511(n) + A105512(n) + A105513(n) + A105514(n) + A105515(n) + A105516(n) + A105517(n) + a(n) + A105519(n).
%F a(n) ~ log_10(9/8) * n. - _Amiram Eldar_, Jan 12 2023
%t Accumulate[Table[If[IntegerDigits[Fibonacci[n]][[1]] == 8, 1, 0], {n, 0, 100}]] (* _Amiram Eldar_, Jan 12 2023 *)
%o (PARI)
%o (leadingdigit(n, b=10) = n \ 10^logint(n, b));
%o (isok(n) = leadingdigit(fibonacci(n))==8);
%o (lista(n)=my(a=vector(1+n), r=0); for (i=1, n, r+=isok(i); a[1+i]=r); a) \\ _Winston de Greef_, Mar 17 2023
%Y Cf. A000030, A000045, A008963, A105508.
%Y Cf. A105511, A105512, A105513, A105514, A105515, A105516, A105517, A105519.
%K nonn,base
%O 0,12
%A _Reinhard Zumkeller_, Apr 11 2005