Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 May 10 2023 05:58:52
%S 1,2,9,38,177,882,4711,26795,161583,1028992,6896067,48487476,
%T 356703531,2738868784,21901044795,182022288438,1569519971934,
%U 14017732109520,129480496353104,1235228480628932,12154988981496309,123229919746398894,1285758785855488107
%N Number of partitions of {1...n} containing 2 strings of 3 consecutive integers, where each string is counted within a block and a string of more than 3 consecutive integers are counted three at a time.
%H Augustine O. Munagi, <a href="https://doi.org/10.1155/IJMMS.2005.215">Set Partitions with Successions and Separations</a>, Int. J. Math and Math. Sc., 2005:3 (2005), 451-463.
%F a(n) = Sum_{k=1..n} c(n, k, 2), where c(n, k, 2) is the case r =2 of c(n, k, r) given by c(n, k, r)=c(n-1, k-1, r)+(k-1)c(n-1, k, r)+c(n-2, k-1, r)+(k-1)c(n-2, k, r)+c(n-1, k, r-1)-c(n-2, k-1, r-1)-(k-1)c(n-2, k, r-1), r=0, 1, .., n-k-1, k=1, 2, .., n-2r, c(n, k, 0) = Sum_{j= 0..floor(n/2)} binomial(n-j, j)*S2(n-j-1, k-1).
%e a(6)=9 because the partitions of {1,...,6} with 2 strings of 3 consecutive integers are 12346/5, 13456/2, 16/2345, 1234/56, 123/456, 12/3456, 1234/5/6, 1/2345/6, 1/2/3456.
%p c := proc(n,k,r) option remember ; local j ; if r =0 then add(binomial(n-j,j)*combinat[stirling2](n-j-1,k-1),j=0..floor(n/2)) ; else if r <0 or r > n-k-1 then RETURN(0) fi ; if n <1 then RETURN(0) fi ; if k <1 then RETURN(0) fi ; RETURN( c(n-1,k-1,r)+(k-1)*c(n-1,k,r)+c(n-2,k-1,r)+(k-1)*c(n-2,k,r) +c(n-1,k,r-1)-c(n-2,k-1,r-1)-(k-1)*c(n-2,k,r-1) ) ; fi ; end: A105484 := proc(n) local k ; add(c(n,k,2),k=1..n) ; end: for n from 4 to 27 do printf("%d, ",A105484(n)) ; od ; # _R. J. Mathar_, Feb 20 2007
%t S2[_, -1] = 0;
%t S2[n_, k_] = StirlingS2[n, k];
%t c[n_, k_, r_] := c[n, k, r] = Which[r == 0, Sum[Binomial[n - j, j]*S2[n - j - 1, k - 1], {j, 0, Floor[n/2]}], r < 0 || r > n - k - 1, 0, n < 1, 0, k < 1, 0, True, c[n - 1, k - 1, r] + (k - 1)*c[n - 1, k, r] + c[n - 2, k - 1, r] + (k - 1)*c[n - 2, k, r] + c[n - 1, k, r - 1] - c[n - 2, k - 1, r - 1] - (k - 1)*c[n - 2, k, r - 1]];
%t A105484[n_] := Sum[c[n, k, 2], {k, 1, n}];
%t Table[A105484[n], {n, 4, 27}] (* _Jean-François Alcover_, May 10 2023, after _R. J. Mathar_ *)
%Y Cf. A105483, A105485, A105488, A105492.
%K nonn
%O 4,2
%A _Augustine O. Munagi_, Apr 10 2005
%E More terms from _R. J. Mathar_, Feb 20 2007