login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A simple "Fractal Jump Sequence" (FJS).
7

%I #24 Jul 17 2024 19:13:21

%S 1,1,1,7,1,1,7,1,1,7,1,1,7,1,1,7,1,1,7,1,1,7,1,1,7,1,1,7,1,1,7,1,1,7,

%T 1,1,7,1,1,7,1,1,7,1,1,7,1,1,7,1,1,7,1,1,7,1,1,7,1,1,7,1,1,7,1,1,7,1,

%U 1,7,1,1,7,1,1,7,1,1,7,1,1,7,1,1,7,1,1,7,1,1,7,1,1,7,1,1,7,1,1,7,1,1,7,1,1

%N A simple "Fractal Jump Sequence" (FJS).

%C See A105397 for definition of Fractal Jump Sequence.

%C a(n+2) = the digital root of the n-th centered hexagonal number (A003215). - _Colin Barker_, Jan 30 2015

%H Colin Barker, <a href="/A105395/b105395.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1).

%F a(n) = a(n-3) for n>4. - _Colin Barker_, Jan 30 2015

%F G.f.: -x*(2*x+1)*(3*x^2-x+1) / ((x-1)*(x^2+x+1)). - _Colin Barker_, Jan 30 2015

%t PadRight[{1}, 100, {7, 1, 1}] (* _Paolo Xausa_, Jul 17 2024 *)

%o (PARI) Vec(-x*(2*x+1)*(3*x^2-x+1)/((x-1)*(x^2+x+1)) + O(x^100)) \\ _Colin Barker_, Jan 30 2015

%Y Cf. A003215, A105397, A003215.

%K base,easy,nonn

%O 1,4

%A _Eric Angelini_, May 01 2005