Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Sep 08 2022 08:45:17
%S 0,8,40,120,272,520,888,1400,2080,2952,4040,5368,6960,8840,11032,
%T 13560,16448,19720,23400,27512,32080,37128,42680,48760,55392,62600,
%U 70408,78840,87920,97672,108120,119288,131200,143880,157352,171640,186768
%N a(n) = 4*n^3 + 4*n.
%C For n > 1, the number of straight lines with n points in a 4-dimensional hypercube of with n points on each edge is 4n^3 + 12n^2 + 16n + 8, i.e., A105374(n+1).
%H Vincenzo Librandi, <a href="/A105374/b105374.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F a(n) = A002522(n)*A008586(n).
%F G.f.: 8*x*(1 + x + x^2)/(1-x)^4. - _Colin Barker_, May 24 2012
%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - _Vincenzo Librandi_, Jun 26 2012
%F a(n) = 8* A006003(n). - _Bruce J. Nicholson_, Apr 18 2017
%e a(5) = 4*5^3 + 4*5 = 500 + 20 = 520.
%t CoefficientList[Series[8*x*(1+x+x^2)/(1-x)^4,{x,0,40}],x] (* or *) LinearRecurrence[{4,-6,4,-1},{0,8,40,120},50] (* _Vincenzo Librandi_, Jun 26 2012 *)
%o (Magma) I:=[0, 8, 40, 120]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // _Vincenzo Librandi_, Jun 26 2012
%o (PARI) a(n)=4*n^3+4*n \\ _Charles R Greathouse IV_, Oct 16 2015
%Y Essentially row or column of A102728 and A105374.
%Y Cf. A006003.
%K easy,nonn
%O 0,2
%A _Henry Bottomley_, Apr 02 2005