login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k)=C(2n-2k,k), n>=0, 0<=k<=floor(2n/3).
0

%I #6 Aug 21 2016 15:51:01

%S 1,1,1,2,1,4,1,1,6,6,1,8,15,4,1,10,28,20,1,1,12,45,56,15,1,14,66,120,

%T 70,6,1,16,91,220,210,56,1,1,18,120,364,495,252,28,1,20,153,560,1001,

%U 792,210,8,1,22,190,816,1820,2002,924,120,1,1,24,231,1140,3060,4368,3003

%N Triangle read by rows: T(n,k)=C(2n-2k,k), n>=0, 0<=k<=floor(2n/3).

%D E. Deutsch, Math. Magazine, vol. 75, No. 3, 2002, p. 228, problem 1623.

%F T(n, k)=C(2n-2k, k), n>=0, 0<=k<=floor(2n/3). G.f.=1/[1-z(1+tz)^2].

%F T(n,k) = A102547(2*n,k). - _R. J. Mathar_, Aug 21 2016

%e Triangle begins:

%e 1;

%e 1;

%e 1,2;

%e 1,4,1;

%e 1,6,6;

%e 1,8,15,4;

%e Row n contains 1+floor(2n/3) terms.

%p T:=(n,k)->binomial(2*n-2*k,k): for n from 0 to 14 do seq(T(n,k),k=0..floor(2*n/3)) od;# yields sequence in triangular form

%Y Row sums yield A002478.

%K nonn,tabf

%O 0,4

%A _Emeric Deutsch_, Apr 14 2005