OFFSET
1,3
COMMENTS
This sequence has the property 17*a(n)*(a(n) + 1) + 1 is a square.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,66,-66,-1,1).
FORMULA
From R. J. Mathar, Nov 13 2009: (Start)
a(n) = a(n-1) +66*a(n-2) -66*a(n-3) -a(n-4) +a(n-5).
G.f.: 8*x^3*(1+x)^2/((1-x)*(1+8*x-x^2)*(1-8*x-x^2)). (End)
a(n) = (1/4)*(-32*[n=0] - 2 + i^n*((23 + 11*(-1)^n)*ChebyshevU(n, 4*I) - i*(187 + 89*(-1)^n)*ChebyshevU(n-1, 4*I))). - G. C. Greubel, Mar 13 2023
MATHEMATICA
LinearRecurrence[{1, 66, -66, -1, 1}, {0, 0, 8, 24, 560}, 40] (* G. C. Greubel, Mar 13 2023 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); [0, 0] cat Coefficients(R!( 8*x^3*(1+x)^2/((1-x)*(1-66*x^2+x^4)) )); // G. C. Greubel, Mar 13 2023
(SageMath)
@CachedFunction
def a(n):
if (n<6): return (0, 0, 0, 8, 24, 560)[n]
else: return a(n-1) +66*a(n-2) -66*a(n-3) -a(n-4) +a(n-5)
[a(n) for n in range(1, 41)] # G. C. Greubel, Mar 13 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Pierre CAMI, Apr 05 2005
EXTENSIONS
More terms from R. J. Mathar, Nov 13 2009
STATUS
approved