login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105063
a(1)=0, a(2)=0, a(3)=8, a(4)=24, a(n) = 32 + 66*a(n-2) - a(n-4) for n > 4.
3
0, 0, 8, 24, 560, 1616, 36984, 106664, 2440416, 7038240, 161030504, 464417208, 10625572880, 30644497520, 701126779608, 2022072419144, 46263741881280, 133426135166016, 3052705837384904, 8804102848537944, 201432321525522416
OFFSET
1,3
COMMENTS
This sequence has the property 17*a(n)*(a(n) + 1) + 1 is a square.
FORMULA
From R. J. Mathar, Nov 13 2009: (Start)
a(n) = a(n-1) +66*a(n-2) -66*a(n-3) -a(n-4) +a(n-5).
G.f.: 8*x^3*(1+x)^2/((1-x)*(1+8*x-x^2)*(1-8*x-x^2)). (End)
a(n) = (1/4)*(-32*[n=0] - 2 + i^n*((23 + 11*(-1)^n)*ChebyshevU(n, 4*I) - i*(187 + 89*(-1)^n)*ChebyshevU(n-1, 4*I))). - G. C. Greubel, Mar 13 2023
MATHEMATICA
LinearRecurrence[{1, 66, -66, -1, 1}, {0, 0, 8, 24, 560}, 40] (* G. C. Greubel, Mar 13 2023 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); [0, 0] cat Coefficients(R!( 8*x^3*(1+x)^2/((1-x)*(1-66*x^2+x^4)) )); // G. C. Greubel, Mar 13 2023
(SageMath)
@CachedFunction
def a(n):
if (n<6): return (0, 0, 0, 8, 24, 560)[n]
else: return a(n-1) +66*a(n-2) -66*a(n-3) -a(n-4) +a(n-5)
[a(n) for n in range(1, 41)] # G. C. Greubel, Mar 13 2023
CROSSREFS
Sequence in context: A002268 A050893 A037025 * A274303 A132586 A208400
KEYWORD
nonn,easy
AUTHOR
Pierre CAMI, Apr 05 2005
EXTENSIONS
More terms from R. J. Mathar, Nov 13 2009
STATUS
approved