login
Read binary numbers downwards to the right.
6

%I #28 May 04 2020 09:32:46

%S 0,1,0,3,2,1,4,7,6,5,0,11,10,9,12,15,14,13,8,3,18,17,20,23,22,21,16,

%T 27,26,25,28,31,30,29,24,19,2,33,36,39,38,37,32,43,42,41,44,47,46,45,

%U 40,35,50,49,52,55,54,53,48,59,58,57,60,63,62,61,56,51,34,1,68,71,70,69,64,75

%N Read binary numbers downwards to the right.

%C Equals A103530(n+2) - 1. - _Philippe Deléham_, Apr 06 2005

%H David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Sloane/sloane300.html">Sloping binary numbers: a new sequence related to the binary numbers</a>, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.

%F a(n) = n - Sum_{ k >= 0, 2^{k+1} <= n, n == k mod 2^(k+1) } 2^(k+1).

%F Structure: blocks of size 2^k taken from A105025, interspersed with terms a(n) itself! Thus a(2^k + k - 1 ) = a(k-1) for k >= 1.

%F From _David Applegate_, Apr 06 2005: (Start)

%F "a(n) = 2^k + a(n-2^k) if k >= 1 and 0 <= n - 2^k - k < 2^k, = a(n-2^k) if k >= 1 and n - 2^k - k = -1, or = 0 if n = 0 (and exactly one of the three conditions is true for any n >= 0).

%F "Equivalently, a(2^k + k + x) = 2^k + a(k+x) if 0 <= x < 2^k, = a(k+x) if x = -1 (for each n >= 0, there is a unique k, x such that 2^k + k + x = n, k >= 0, -1 <= x < 2^k). This recurrence follows immediately from the definition.

%F "The recurrence captures three observed facts about a: a(2^k + k - 1) = a(k-1); a consists of blocks of length 2^k of A105025 interspersed with terms of a; a(n) = n - Sum_{ k >= 0, 2^{k+1} <= n, n = k mod 2^(k+1) } 2^(k+1)." (End)

%F a(n) = sum_{k=0..n} A103589(n,k)*2^(n-k). - _L. Edson Jeffery_, Dec 01 2013

%e Start with the binary numbers:

%e ........0

%e ........1

%e .......10

%e .......11

%e ......100

%e ......101

%e ......110

%e ......111

%e .....1000

%e .........

%e and read downwards to the right, getting 0, 1, 0, 11, 10, 1, 100, 111, ...

%p f:= proc (n) local t1, l; t1 := n; for l from 0 to n do if `mod`(n-l,2^(l+1)) = 0 and n >= 2^(l+1) then t1 := t1-2^(l+1) fi; od; t1; end proc;

%t f[n_] := Block[{k = 0, s = 0}, While[2^(k + 1) < n + 1, If[ Mod[n, 2^(k + 1)] == k, s = s + 2^(k + 1)]; k++ ]; n - s]; Table[ f[n], {n, 0, 75}] (* _Robert G. Wilson v_, Apr 06 2005 *)

%Y Analog of A102370. Cf. A105034, A105025.

%Y Cf. triangular array in A103589.

%K nonn,base

%O 0,4

%A _N. J. A. Sloane_, Apr 04 2005