OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..200
MATHEMATICA
(* First program *)
nmax = 19;
M = Table[If[n==k, 0, If[n==k+1, -n+1, -Coefficient[(1 -1/Sum[i!*x^i, {i, 0, n}])/x + O[x]^n, x, n-k-1]]], {n, 1, nmax+1}, {k, 1, nmax+1}];
T[n_, k_]/; 0<=k<=n:= Sum[(-1)^p MatrixPower[M, p][[n+1, k+1]]/p, {p, n+1}]; T[_, _] = 0;
a[n_]:= Sum[T[n, k], {k, 0, n}];
Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Aug 09 2018, from PARI *)
(* Second program *)
t[n_, k_]:= t[n, k] = If[n<k || k<0, 0, If[n==k, 1, If[n==k+1, n, k*t[n, k+1] + Sum[t[j, 0]*t[n, j+k+1], {j, 0, n-k-1}]]]];
M:= M= With[{q=52}, Table[If[k>=n, 0, t[n, k]], {n, 0, q}, {k, 0, q}]];
f[j_]:= f[j]= MatrixPower[M, j];
T[n_, k_]:= T[n, k]= If[k>n-1, 0, Sum[(-1)^(j-1)*f[j][[n+1, k+1]]/j, {j, n}]];
a[n_]:= a[n]= Sum[T[n, k], {k, 0, n}];
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Jun 08 2021 *)
PROG
(PARI) {a(n)=sum(k=0, n, sum(p=1, n+1, (-1)^p*(matrix(n+1, n+1, m, j, if(m==j, 0, if(m==j+1, -m+1, -polcoeff((1-1/sum(i=0, m, i!*x^i))/x+O(x^m), m-j-1))))^p)[n+1, k+1]/p))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 10 2005
STATUS
approved