|
|
A104906
|
|
Numbers n such that d(n)*reversal(n)=phi(n), where d(n) is number of positive divisors of n.
|
|
2
|
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
If n is a term of this sequence and gcd(10,n)=1 then 10*n is also in the sequence because reversal(10*n)=reversal(n); d(10)=phi(10) and both functions d & phi are multiplicative. No further terms up to 350000000.
|
|
LINKS
|
|
|
EXAMPLE
|
8310 is in the sequence because d(8310)=16; reversal(8310)=138;
phi(8310)=2208 & 16*138=2108.
|
|
MATHEMATICA
|
reversal[n_]:= FromDigits[Reverse[IntegerDigits[n]]]; Do[If[DivisorSigma[0, n]*reversal[n] == EulerPhi[n], Print[n]], {n, 350000000}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
more,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|