Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Feb 15 2022 12:54:12
%S 2,3,2,5,3,2,7,5,3,2,11,7,5,3,2,13,11,7,5,3,2,17,13,11,7,5,3,2,19,17,
%T 13,11,7,5,3,2,23,19,17,13,11,7,5,3,2,29,23,19,17,13,11,7,5,3,2,31,29,
%U 23,19,17,13,11,7,5,3,2,37,31,29,23,19,17,13,11,7,5,3,2,41,37,31,29
%N Triangle T(n,k) = (n-k+1)-th prime, read by rows.
%C Repeatedly writing the prime sequence backwards.
%C Sequence B is called a reverse reluctant sequence of sequence A, if B is triangle array read by rows: row number k lists first k elements of the sequence A in reverse order. Sequence A104887 is the reverse reluctant sequence of sequence the prime numbers (A000040). - _Boris Putievskiy_, Dec 13 2012
%H Reinhard Zumkeller, <a href="/A104887/b104887.txt">Rows n = 1..125 of triangle, flattened</a>
%H Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012.
%F T(n,k) = A000040(n-k+1); a(n) = A000040(A004736(n)).
%F a(n) = A000040(m), where m=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). - _Boris Putievskiy_, Dec 13 2012
%e Triangle begins:
%e 2;
%e 3, 2;
%e 5, 3, 2;
%e 7, 5, 3, 2;
%e 11, 7, 5, 3, 2;
%e 13, 11, 7, 5, 3, 2;
%e 17, 13, 11, 7, 5, 3, 2;
%p T:=(n,k)->ithprime(n-k+1): seq(seq(T(n,k),k=1..n),n=1..13); # _Muniru A Asiru_, Mar 16 2019
%t Module[{nn=15,prms},prms=Prime[Range[nn]];Table[Reverse[Take[prms,n]],{n,nn}]]//Flatten (* _Harvey P. Dale_, Aug 10 2021 *)
%o (Haskell)
%o import Data.List (inits)
%o a104887 n k = a104887_tabl !! (n-1) !! (k-1)
%o a104887_row n = a104887_tabl !! (n-1)
%o a104887_tabl = map reverse $ tail $ inits a000040_list
%o -- _Reinhard Zumkeller_, Oct 02 2014
%o (GAP) P:=Filtered([1..200],IsPrime);;
%o T:=Flat(List([1..13],n->List([1..n],k->P[n-k+1]))); # _Muniru A Asiru_, Mar 16 2019
%Y Reflected triangle of A037126.
%Y Cf. A098012 (partial products per row).
%K nonn,tabl
%O 1,1
%A _Gary W. Adamson_, Mar 29 2005
%E Edited by _Ralf Stephan_, Apr 05 2009