login
Records in A104883.
2

%I #12 Jun 14 2022 02:26:41

%S 4,5,8,24,54,117,222,258,291,591,888,951,1656,1674,2451,2577,4212,

%T 4857,6597,7398,10758,10950,11601,19608,20604,27411,35157,43338,45174,

%U 46920,53412,71661,90699,96681,107385,123051,130782,189741,225747,273738,288096,362781

%N Records in A104883.

%C a(k) has the largest equal 'gap' between the nearest primes so far, i.e.; (the sum of the two nearest primes)/2 equals a(k).

%H Amiram Eldar, <a href="/A104884/b104884.txt">Table of n, a(n) for n = 1..72</a>

%t f[n_] := Block[{k}, If[ OddQ[n], k = 2, k = 1]; While[ !PrimeQ[n - k] || !PrimeQ[n + k], k += 2]; k]; t = Table[f[n], {n, 4, 10^4}];u = Table[0, {80}]; Do[a = t[[n]]; If[a < 81 && u[[a]] == 0, u[[a]] = n + 3], {n, 10^4}]; a = 0; lst = {}; Do[ If[u[[n]] > a, a = u[[n]]; AppendTo[lst, a]], {n, 80}]; lst

%Y Cf. A104883, A082467.

%K nonn

%O 1,1

%A _Benoit Cloitre_ and _Robert G. Wilson v_, Mar 28 2005