login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Table of values with shape sequence A000041 related to involutions and multinomials. Also column sums of the Kostka matrices associated with the partitions (in Abramowitz & Stegun ordering).
6

%I #27 Feb 25 2023 08:33:53

%S 1,1,1,2,1,2,4,1,2,3,5,10,1,2,3,5,7,13,26,1,2,3,4,5,8,11,14,20,38,76,

%T 1,2,3,4,5,8,10,13,14,23,32,42,60,116,232,1,2,3,4,5,5,8,11,14,17,14,

%U 24,30,40,56,43,73,103,136,196,382,764,1

%N Table of values with shape sequence A000041 related to involutions and multinomials. Also column sums of the Kostka matrices associated with the partitions (in Abramowitz & Stegun ordering).

%C Row sums give A178718.

%H Wouter Meeussen, <a href="/A104778/b104778.txt">Table of n, a(n) for n = 0..372</a>

%H Wouter Meeussen, <a href="/A104778/a104778.txt">Table of n, a(n), partition parts for n = 0..372</a>

%e The 47 multinomials (corresponding to A005651(4)=47) can be distributed as in the following triangular array:

%e 1

%e 9 1

%e 4 6 1

%e 9 2 3 1

%e 1 3 2 3 1

%e divide each term by

%e 1

%e 3 1

%e 2 3 1

%e 3 2 3 1

%e 1 3 2 3 1

%e yielding

%e 1

%e 3 1

%e 2 2 1

%e 3 1 1 1

%e 1 1 1 1 1

%e with column sums 10 5 3 2 1.

%e Therefore the fourth row of the table is 1 2 3 5 10

%e The initial rows are:

%e 1,

%e 1,

%e 1, 2,

%e 1, 2, 4,

%e 1, 2, 3, 5, 10,

%e 1, 2, 3, 5, 7, 13, 26,

%e 1, 2, 3, 4, 5, 8, 11, 14, 20, 38, 76,

%e 1, 2, 3, 4, 5, 8, 10, 13, 14, 23, 32, 42, 60, 116, 232,

%e 1, 2, 3, 4, 5, 5, 8, 11, 14, 17, 14, 24, 30, 40, 56, 43, 73, 103, 136, 196, 382, 764,

%e ...

%t (* for function 'kostka' see A178718 *)

%t aspartitions[n_] := Reverse /@ Sort[Sort /@ Partitions[n]];

%t asorder[n_] := rankpartition /@ Reverse /@ Sort[Sort /@ Partitions[n]];

%t Flatten[Table[Tr/@ Transpose[PadLeft[#,PartitionsP[k]] [[asorder[k]] ]&/@ kostka/@ aspartitions[k]],{k,11}]]

%Y Cf. A000041, A000085, A005651, A036038, A097522, A104707, A104778, A178718.

%Y A001475 and A000085 are subsequences.

%K nonn,tabf

%O 0,4

%A _Alford Arnold_, Mar 24 2005

%E Corrected and edited by _Wouter Meeussen_, Jan 15 2012