login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = binomial(n+7,7)*binomial(n+12,7).
0

%I #17 Aug 30 2022 09:44:30

%S 792,13728,123552,772200,3775200,15402816,54609984,172931616,

%T 498841200,1330243200,3316739712,7801876368,17439488352,37263864000,

%U 76488984000,151448188320,290275694280,540192201120,978609060000,1729734435000,2988981103680,5058275713920

%N a(n) = binomial(n+7,7)*binomial(n+12,7).

%H <a href="/index/Rec#order_15">Index entries for linear recurrences with constant coefficients</a>, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003, 1365,-455,105,-15,1).

%F G.f.: -264*(3+7*x+3*x^2)/(x-1)^15. - _R. J. Mathar_, Nov 29 2015

%F From _Amiram Eldar_, Aug 30 2022: (Start)

%F Sum_{n>=0} 1/a(n) = 1263966463/1306800 - 98*Pi^2.

%F Sum_{n>=0} (-1)^n/a(n) = 3935051/13068 - 14336*log(2)/33. (End)

%e If n=0 then C(0+7,0+0)*C(0+12,7) = C(7,0)*C(12,7) = 1*792 = 792.

%e If n=6 then C(6+7,6+0)*C(6+12,7) = C(13,6)*C(18,7) = 1716*32824 = 54609984.

%t a[n_] := Binomial[n + 7, 7] * Binomial[n + 12, 7]; Array[a, 25, 0] (* _Amiram Eldar_, Aug 30 2022 *)

%Y Cf. A062190.

%K easy,nonn

%O 0,1

%A _Zerinvary Lajos_, Apr 22 2005