login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest semiprime equal to the sum of n distinct primes.
1

%I #14 May 13 2013 01:54:08

%S 9,10,21,34,51,58,77,106,129,166,201,262,287,334,381,454,501,586,669,

%T 718,791,922,989,1082,1167,1282,1371,1486,1623,1754,1851,2018,2127,

%U 2326,2427,2638,2747,2974,3093,3274,3459,3694,3831,4034,4227,4534,4661,4894,5123,5366

%N Smallest semiprime equal to the sum of n distinct primes.

%C The sequence is monotonic for its first million terms. Does there exist n with a(n) < a(n-1)? [_Charles R Greathouse IV_, Aug 24 2011]

%H Charles R Greathouse IV, <a href="/A104646/b104646.txt">Table of n, a(n) for n = 2..10000</a>

%e a(2) = 9 because 9 = 2+7=9 = 3*3;

%e a(3) = 10 because 10 = 2+3+5 = 2*5;

%e a(4) = 21 because 21 = 2+3+5+11 = 3*7.

%o (PARI) issemi(n)=bigomega(n)==2

%o a(n)={

%o my(v=primes(n+3),s=sum(i=1,n+1,v[i]),m,t,t1);

%o m=s+v[n+2]-5;

%o forstep(i=n+1,1,-1,

%o t=s-v[i];

%o if(t >= m, break);

%o if(issemi(t),return(t))

%o );

%o s+=v[n+2];

%o m=s+v[n+3]-10;

%o for(i=2,n+2,

%o t=s-v[i];

%o for(j=1,i-1,

%o t1=t-v[j];

%o if(t1 >= m, break);

%o if(issemi(t1),m=t1)

%o )

%o );

%o if(issemi(m), return(m));

%o error("could not find a("n")")

%o }; \\ _Charles R Greathouse IV_, Aug 24 2011

%K nonn

%O 2,1

%A _Giovanni Teofilatto_, Apr 21 2005

%E a(6) corrected, a(7)-a(50) by _Charles R Greathouse IV_, Aug 24 2011