Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Sep 08 2022 08:45:17
%S 1,3,5,9,11,15,21,23,29,33,35,39,41,51,53,63,65,69,75,81,83,89,95,99,
%T 105,111,113,119,125,131,135,141,153,155,165,173,179,183,189,191,209,
%U 215,219,221,231,233,239,243,245,249,251,261,273,281,285,293,299
%N Odd n such that 2*n+1 is prime.
%C Also: Numbers k such that 2k+1 is in A002145, i.e., a Gaussian prime. - _M. F. Hasler_, Feb 25 2011
%C Also: Number of quadratic residues modulo A002145(n). - _M. F. Hasler_, Feb 25 2011
%H G. C. Greubel, <a href="/A104635/b104635.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = floor(A002145(n)/2). - _M. F. Hasler_, Feb 25 2011
%t Select[Range[1,301,2],PrimeQ[2#+1]&] (* _Harvey P. Dale_, May 08 2012 *)
%o (PARI) forstep( k=1,250,2, isprime(2*k+1) && print1(k", ")) \\ _M. F. Hasler_, Feb 25 2011
%o (PARI) forprime( p=1,500, p%4==3 || next; print1(p\2", ")) \\ _M. F. Hasler_, Feb 25 2011
%o (Magma) [n: n in [1..500 by 2] | IsPrime(2*n+1)]; // _Vincenzo Librandi_, Aug 14 2018
%Y Cf. A002145, A005097, A104636.
%K easy,nonn
%O 1,2
%A _Zak Seidov_, Mar 18 2005