login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1)=1. a(n) = a(n-1) + (sum of terms, from among terms a(1) through a(n-1), which are prime or 1).
4

%I #34 Jun 03 2024 08:53:08

%S 1,2,5,13,34,55,76,97,215,333,451,569,1256,1943,2630,3317,4004,4691,

%T 10069,25516,40963,56410,71857,87304,102751,118198,133645,149092,

%U 164539,179986,195433,210880,226327,241774,257221,529889,802557,1075225

%N a(1)=1. a(n) = a(n-1) + (sum of terms, from among terms a(1) through a(n-1), which are prime or 1).

%C By Dirichlet's Theorem there are an infinite number of primes in this sequence.

%H Michel Marcus, <a href="/A104589/b104589.txt">Table of n, a(n) for n = 1..2000</a>

%F a(n) = 3*a(n-1) - a(n-2) if a(n-1) is prime, else a(n) = 2*a(n-1) - a(n-2) for n>3. - _John Tyler Rascoe_, Jul 20 2022

%e The noncomposites among the first 8 terms of the sequence are 1, 2, 5, 13 and 97. The sum of these is 1+2+5+13+97 = 118. So a(9) = a(8) + 118 = 215.

%t f[lst_] := Append[lst, Last@ lst + Plus @@ Select[lst, (PrimeQ@ # || # == 1) &]]; Nest[f, {1}, 38] (* _Robert G. Wilson v_, Jul 02 2007 *)

%o (PARI) lista(nn) = my(va = vector(nn), s = 1); va[1] = 1; for (n=2, nn, va[n] = va[n-1] + s; if (isprime(va[n]), s += va[n]);); va; \\ _Michel Marcus_, Jul 21 2022

%o (Python)

%o from sympy import isprime

%o from itertools import islice

%o def A104589_gen(): # generator of terms

%o a, b = 1, 1

%o while True:

%o yield a

%o a += b

%o b += a if isprime(a) else 0

%o A104589_list = list(islice(A104589_gen(),50)) # _Chai Wah Wu_, Jun 03 2024

%Y Cf. A008578.

%K nonn

%O 1,2

%A _Leroy Quet_, Jun 12 2007

%E More terms from _Robert G. Wilson v_, Jul 02 2007