login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1+sqrt(1-4*x))/(5*sqrt(1-4*x)-3).
1

%I #14 Jan 30 2020 21:29:15

%S 1,4,24,148,920,5736,35808,223668,1397496,8732920,54575888,341082504,

%T 2131706864,13322959888,83267756400,520420803060,3252620324280,

%U 20328841669080,127055130786960,794094089779800,4963086293860560,31019282772508080,193870492861908480

%N Expansion of (1+sqrt(1-4*x))/(5*sqrt(1-4*x)-3).

%C Apply the Riordan matrix ((1+sqrt(1-4x))/2,(1-sqrt(1-4x))/2) (inverse of (1/(1-x),x(1-x))) to 5^n.

%H Vincenzo Librandi, <a href="/A104531/b104531.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) = 0^n + sum{k=0..n, 4^(k+1)*C(2n-1, n-k-1)*2*(k+1)/(n+k+1)}

%F D-finite with recurrence: 4*n*a(n) = (41*n-24)*a(n-1) - 50*(2*n-3)*a(n-2). - _Vaclav Kotesovec_, Oct 17 2012

%F a(n) ~ 3*5^(2*n-1)/4^n. - _Vaclav Kotesovec_, Oct 17 2012

%t CoefficientList[Series[(1+Sqrt[1-4*x])/(5*Sqrt[1-4*x]-3), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 17 2012 *)

%o (PARI) x='x+O('x^66); Vec((1+sqrt(1-4*x))/(5*sqrt(1-4*x)-3)) \\ _Joerg Arndt_, May 13 2013

%Y Cf. A088218, A067336, A076025, A104530, A104532.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Mar 12 2005