OFFSET
1,2
COMMENTS
144 appears to be the most common perfect square.
EXAMPLE
Let P(n) be the period length of the modulo n Fibonacci sequence (also called the Pisano period). Then {P(n)}=1,3,8,6,20,24,16,12,... and a(2)=7 because the second perfect square in {P(n)} occurs when n=7.
MATHEMATICA
t = {1}; Do[a = {1, 0}; a0 = a; k = 0; While[k++; s = Mod[Plus @@ a, n]; a = RotateLeft[a]; a[[2]] = s; a != a0]; If[IntegerQ[Sqrt[k]], AppendTo[t, n]], {n, 2, 1000}]; t (* T. D. Noe, Aug 08 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
William C. Brown (wcbrow00(AT)centre.edu), Apr 18 2005
STATUS
approved