Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Oct 14 2019 11:44:24
%S 1,0,0,1,-1,-1,2,-1,-1,3,-2,-2,5,-3,-3,7,-5,-4,11,-6,-6,15,-10,-9,22,
%T -13,-12,30,-19,-17,42,-25,-23,56,-35,-31,77,-45,-41,100,-62,-55,133,
%U -79,-71,173,-105,-93,226,-134,-120,289,-175,-154,373,-220,-196,472,-284,-250,601,-355,-314,755,-451,-396,950
%N Coefficients of the A-Bailey Mod 9 identity.
%H Seiichi Manyama, <a href="/A104467/b104467.txt">Table of n, a(n) for n = 0..10000</a>
%H J. Mc Laughlin, A. V. Sills and P. Zimmer, <a href="https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS15">Rogers-Ramanujan-Slater Type Identities</a>, Electronic J. Combinatorics, DS15, 1-59, May 31, 2008. See "2.9 Mod 9 Identities".
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BaileyMod9Identities.html">Bailey Mod 9 Identities</a>
%F G.f.: Sum_{n>=0} q^(3*n^2) * Product_{k=1..3*n} (1-x^k) / (Product_{k=1..n} (1-x^(3*k)) * Product_{k=1..2*n} (1-x^(3*k))). - _Seiichi Manyama_, Oct 14 2019
%F G.f.: Product_{k>0} (1-x^(9*k-4)) * (1-x^(9*k-5)) / ( (1-x^(9*k-3)) * (1-x^(9*k-6)) ). - _Seiichi Manyama_, Oct 14 2019
%e G.f.: 1 + q^3 - q^4 - q^5 + 2*q^6 - q^7 - q^8 + 3*q^9 - 2*q^10 + ...
%o (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^(9*k-4))*(1-x^(9*k-5))/((1-x^(9*k-3))*(1-x^(9*k-6))))) \\ _Seiichi Manyama_, Oct 14 2019
%Y Cf. A104468, A104469.
%K sign
%O 0,7
%A _Eric W. Weisstein_, Mar 09 2005