login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that 10^(k-1) == 1 (mod k).
2

%I #17 Jul 25 2021 02:39:45

%S 1,3,7,9,11,13,17,19,23,29,31,33,37,41,43,47,53,59,61,67,71,73,79,83,

%T 89,91,97,99,101,103,107,109,113,127,131,137,139,149,151,157,163,167,

%U 173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,259,263

%N Numbers k such that 10^(k-1) == 1 (mod k).

%C Superset of the full reptend primes.

%H Amiram Eldar, <a href="/A104381/b104381.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FullReptendPrime.html">Full Reptend Prime</a>.

%t Select[ Range[270], Mod[ PowerMod[10, # - 1, # ] - 1, # ] == 0 &] (* _Robert G. Wilson v_, Mar 16 2005 *)

%t Join[{1},Select[Range[300],PowerMod[10,#-1,#]==1&]] (* _Harvey P. Dale_, Oct 24 2016 *)

%o (PARI) isok(n) = lift(Mod(10, n)^(n-1)) == 1; \\ _Michel Marcus_, Sep 25 2014

%Y Cf. A005939.

%K nonn

%O 1,2

%A _Eric W. Weisstein_, Mar 03 2005