

A104189


Prime numbers arising from Schorn's proof that there are infinitely many primes.


0



2, 3, 5, 7, 13, 19, 73, 97, 241, 601, 2161, 15121, 20161, 30241, 35281, 161281, 241921, 282241, 1088641, 1451521, 2177281, 2903041, 10886401, 18144001, 29030401, 32659201, 39916801, 199584001, 319334401, 958003201, 2395008001, 2874009601
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

Paolo Ribenboim, "The New Book of Prime Number Records", 1996, ISBN 0387944575 Page 5


LINKS

Table of n, a(n) for n=1..32.
R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC2012) and another new proof, arXiv preprint arXiv:1202.3670, 2012  From N. J. A. Sloane, Jun 13 2012
Peter Schorn, Schorn's Proof
www.mathematic.de, Schorn's proof


FORMULA

n!*i+1, where 1 <= i <= n and n!*i+1 is a prime.


EXAMPLE

6!*3+1 = 2161


MATHEMATICA

lst={}; Do[lst=Join[lst, Select[n!Range[n]+1, PrimeQ]], {n, 12}]; lst  T. D. Noe, Nov 02 2006


CROSSREFS

Sequence in context: A147485 A341650 A341640 * A301776 A178570 A294443
Adjacent sequences: A104186 A104187 A104188 * A104190 A104191 A104192


KEYWORD

nonn


AUTHOR

Karsten Meyer, Mar 12 2005; extended Jun 08 2005


EXTENSIONS

Corrected by T. D. Noe, Nov 02 2006


STATUS

approved



