%I #39 Nov 29 2024 17:35:10
%S 0,12,56,132,240,380,552,756,992,1260,1560,1892,2256,2652,3080,3540,
%T 4032,4556,5112,5700,6320,6972,7656,8372,9120,9900,10712,11556,12432,
%U 13340,14280,15252,16256,17292,18360,19460,20592,21756,22952,24180
%N a(n) = 4*n*(4*n - 1).
%C There is a ball-hating monster that lives in a box. You throw 4 numbered balls into the box. He throws 2 balls out. Repeat. Then a(n) gives the number of ordered possibilities the monster has to throw the balls back at each stage (2,1 is different from 1,2).
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F a(n) = (4*n)!/(4*n-2)! for n>0.
%F a(n) = 32*n + a(n-1) - 20 (with a(0)=0). - _Vincenzo Librandi_, Nov 13 2010
%F From _Colin Barker_, Jun 25 2012: (Start)
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
%F G.f.: 4*x*(3+5*x)/(1-x)^3. (End)
%F Sum_{n>=1} 1/a(n) = 3*log(2)/4 - Pi/8. - _Amiram Eldar_, Jan 03 2022
%F E.g.f.: 4*exp(x)*x*(3 + 4*x). - _Stefano Spezia_, Nov 29 2024
%e a(2) = (4*2)!/(4*2-2)! = 8!/6! = 8*7 = 56.
%p for n from 1 to 100 do printf(`%d,`, (4*n-4)*(4*n-5)) od: # _James A. Sellers_, Apr 10 2005
%o (PARI) a(n)=4*n*(4*n-1) \\ _Charles R Greathouse IV_, Jun 16 2017
%Y Cf. A004767, A008586.
%K nonn,easy
%O 0,2
%A Ruppi Rana (ruppi.rana(AT)gmail.com), Mar 12 2005
%E More terms from _James A. Sellers_, Apr 10 2005
%E Simpler definition from _Ralf Stephan_, May 20 2007