login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1, if A(k) = sequence of first 2^(k-1) terms and if B(k) is A(k) with 0's and 1's exchanged, then A(k+1) = A(k)A(k) if a(k) = 0, A(k+1) = A(k)B(k) if a(k) = 1.
5

%I #11 Oct 13 2019 10:17:33

%S 1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,0,1,

%T 0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,1,0,1,0,

%U 0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0

%N a(1) = 1, if A(k) = sequence of first 2^(k-1) terms and if B(k) is A(k) with 0's and 1's exchanged, then A(k+1) = A(k)A(k) if a(k) = 0, A(k+1) = A(k)B(k) if a(k) = 1.

%t f[l_]:=Join[l,If[l[[Log[2,Length[l]]+1]]==0,l,1-l]];Nest[f,{1},7] (* _Ray Chandler_, Apr 05 2009 *)

%Y Cf. A104105, A104106, A104107, A104108.

%K easy,nonn

%O 1,1

%A _Leroy Quet_, Mar 04 2005

%E Edited and extended by _Ray Chandler_, Apr 05 2009