login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of dimer tilings of a 4 x 2n Moebius strip.
2

%I #12 Jul 31 2015 17:27:07

%S 1,11,71,539,4271,34276,276119,2226851,17965151,144948419,1169523076,

%T 9436433171,76139155439,614339685971,4956888901511,39995380044004,

%U 322708555336511,2603821045832171,21009309912323639

%N Number of dimer tilings of a 4 x 2n Moebius strip.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (11, -25, 11, -1).

%F G.f.: (1-25x^2+22x^3-3x^4)/(1-11x+25x^2-11x^3+x^4).

%F a(0)=1, a(1)=11, a(2)=71, a(3)=539, a(4)=4271, a(n)=11*a(n-1)-25*a(n-2)+ 11*a(n-3)-a(n-4). - _Harvey P. Dale_, Jun 15 2011

%t Join[{1},LinearRecurrence[{11,-25,11,-1},{11,71,539,4271},40]] (* or *) CoefficientList[ Series[ (1-25x^2+22x^3-3x^4)/ (1-11x+ 25x^2- 11x^3+x^4),{x,0,40}],x] (* _Harvey P. Dale_, Jun 15 2011 *)

%Y Cf. Second row of array A103997.

%K nonn

%O 0,2

%A _Ralf Stephan_, Feb 26 2005