Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Aug 06 2022 14:15:50
%S 1,3,6,9,54,54,540,405,5670,3402,61236,30618,673596,288684,7505784,
%T 2814669,84440070,28146690,956987460,287096238,10909657044,2975361012,
%U 124965162504,31241290626,1437099368796,331638315876,16581915793800
%N Expansion of (sqrt(1-12*x^2)+12*x^2+2*x-1)/(2*x*sqrt(1-12*x^2)).
%H Robert Israel, <a href="/A103978/b103978.txt">Table of n, a(n) for n = 0..1855</a>
%F G.f.: 1/sqrt(1-12*x^2)+(1-sqrt(1-12*x^2))/(2*x).
%F a(n) = sum{k=0..floor(n/2), 3^(n-k) * A000108(k) * C(k+1, n-k)}.
%F D-finite with recurrence: -(n+1)*a(n)+2*(n-1)*a(n-1) +12*(2n-3)*a(n-2) +24(2-n)*a(n-3) + 144*(4-n)*a(n-4)=0. - _R. J. Mathar_, Dec 14 2011
%F a(n) ~ 2^(n + 1/2) * 3^(n/2) / sqrt(Pi*n) if n is even and a(n) ~ 2^(n + 1/2) * 3^((n+1)/2) / (sqrt(Pi) * n^(3/2)) if n is odd. - _Vaclav Kotesovec_, Nov 19 2021
%p rec:= -(n+1)*a(n)+2*(n-1)*a(n-1)+12*(2*n-3)*a(n-2)+24*(2-n)*a(n-3)+144*(4-n)*a(n-4):
%p f:= gfun:-rectoproc({rec=0,a(0) = 1, a(1) = 3, a(2) = 6, a(3) = 9},a(n),remember):
%p map(f, [$0..30]); # _Robert Israel_, Sep 13 2020
%t CoefficientList[Series[(Sqrt[1-12x^2]+12x^2+2x-1)/(2x Sqrt[1-12x^2]),{x,0,30}],x] (* _Harvey P. Dale_, Aug 06 2022 *)
%Y Cf. A025225, A059304, A103973.
%K easy,nonn
%O 0,2
%A _Paul Barry_, Feb 23 2005