|
|
A103956
|
|
The Rauzy Markov nest of nests substitution is done upon the Conway A004001 sequence.
|
|
0
|
|
|
1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
In which the Markov recursion is made to work on another sequential function that is chaotic but with domain integrity (all the numbers are covered). If instead a Hofstadter sequence were used which skips domain elements, "holes" in the sequence are made.
|
|
LINKS
|
Table of n, a(n) for n=0..104.
|
|
FORMULA
|
1-> {1, 2) 2->{1, 3} 3->1 Nested Nest of substitution list are taken in a chaotic order.
|
|
MATHEMATICA
|
Conway[1] = Conway[2] = 1; Conway[n_Integer?Positive] := Conway[n] = Conway[Conway[n - 1]] + Conway[n - Conway[n - 1]] s[1] = {1, 2}; s[2] = {1, 3}; s[3] = {1}; t[a_] := Join[a, Flatten[s /@ a]]; p[0] = {1}; p[1] = t[{1}]; p[n_] := t[p[n - 1]] aa = Flatten[Table[p[If[n > 0, Conway[n], n]], {n, 0, 7}]]
|
|
CROSSREFS
|
Cf. A073058, A103684, A004001.
Sequence in context: A233285 A233284 A112195 * A103957 A232550 A305426
Adjacent sequences: A103953 A103954 A103955 * A103957 A103958 A103959
|
|
KEYWORD
|
nonn,uned
|
|
AUTHOR
|
Roger L. Bagula, Mar 30 2005
|
|
STATUS
|
approved
|
|
|
|