login
A103790
a(n) = the minimum k that makes prime(n)+A019565(k) prime.
2
0, 1, 1, 3, 1, 3, 1, 5, 3, 1, 3, 3, 1, 5, 3, 3, 1, 3, 3, 1, 3, 5, 3, 9, 3, 1, 3, 1, 7, 9, 5, 3, 1, 5, 1, 3, 3, 5, 3, 3, 1, 5, 1, 3, 1, 7, 7, 3, 1, 5, 3, 1, 5, 3, 3, 3, 1, 3, 3, 1, 5, 9, 3, 1, 13, 7, 3, 5, 1, 5, 3, 7, 3, 3, 5, 3, 7, 11, 7, 5, 1, 5, 1, 3, 5, 3, 7, 3, 1, 15, 11, 7, 13, 7, 5, 3, 9, 1, 13, 3, 5, 3, 3
OFFSET
1,4
COMMENTS
All elements except the first one are odd. This suggests a new way looking for large primes candidates.
EXAMPLE
Prime(1)+A019565(0)=2+1=3 is prime, so a(1)=0;
Prime(4)+A019565(3)=7+6=13 is prime, so a(4)=3;
MATHEMATICA
A019565 = Function[tn, k1 = tn; o = 1; tt = 1; While[k1 > 0, k2 = Mod[k1, 2]; If[k2 == 1, tt = tt*Prime[o]]; k1 = (k1 - k2)/2; o = o + 1]; tt]; Do[npd = Prime[n]; ts = 1; tt = ts; cp = npd + A019565[tt]; While[ ! (PrimeQ[cp]), ts = ts + 1; tt = ts; cp = npd + A019565[ tt]]; Print[ts], {n, 3, 200} ]
CROSSREFS
Cf. A019565.
Sequence in context: A337713 A309425 A218355 * A249947 A193583 A331731
KEYWORD
easy,nonn
AUTHOR
Lei Zhou, Feb 16 2005
STATUS
approved