login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of contiguous digits i in the counting numbers, for i=2.
1

%I #10 Jun 10 2023 13:47:28

%S 1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,

%T 1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,2,2,5,2,2,2,2,2,2,1,1,

%U 1,2,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1

%N Number of contiguous digits i in the counting numbers, for i=2.

%C Write the natural numbers as an infinite sequence of digits, starting at the left; and count the digits of each group of "2"'s you encounter (the smallest "groups" have one "2").

%H Harvey P. Dale, <a href="/A103756/b103756.txt">Table of n, a(n) for n = 1..1000</a>

%e a(1)=1: the first "2" of the counting numbers, isolated.

%e a(2)=1: the second "2", second digit of number 12, isolated.

%e a(3)=1 the first digit of number 20, isolated.

%e a(4)=1: the first digit of number 21, isolated.

%e a(5)=3: two "2"'s of 22 followed by one "2" of 23 = three "2"'s, the next group of "2"'s.

%t Length/@Select[Split[Flatten[IntegerDigits/@Range[300]]],Union[#]=={2}&] (* _Harvey P. Dale_, Jun 10 2023 *)

%K nonn,base

%O 1,5

%A _Alexandre Wajnberg_, Mar 28 2005