login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nonempty subsets S of {1,2,3,...,n} that have the property that no element x of S is a nonnegative integer linear combination of elements of S-{x}.
40

%I #30 Sep 10 2022 01:50:01

%S 1,2,4,6,11,15,26,36,57,79,130,170,276,379,579,784,1249,1654,2615,

%T 3515,5343,7256,11352,14930,23203,31378,47510,63777,98680,130502,

%U 201356,270037,407428,548089,840170,1110428,1701871,2284324,3440336,4601655

%N Number of nonempty subsets S of {1,2,3,...,n} that have the property that no element x of S is a nonnegative integer linear combination of elements of S-{x}.

%H Fausto A. C. Cariboni, <a href="/A103580/b103580.txt">Table of n, a(n) for n = 1..100</a>

%H Sergey Kitaev, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Kitaev/kitaev45.html">Independent Sets on Path-Schemes</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.2.

%H Sean Li, <a href="https://arxiv.org/abs/2208.14587">Counting numerical semigroups by Frobenius number, multiplicity, and depth</a>, arXiv:2208.14587 [math.CO], 2022.

%F a(n) = A326083(n) - 1. - _Gus Wiseman_, Jun 07 2019

%e a(4) = 6 because the only permissible subsets are {1}, {2}, {3}, {4}, {2,3}, {3,4}.

%e From _Gus Wiseman_, Jun 07 2019: (Start)

%e The a(1) = 1 through a(6) = 15 nonempty subsets of {1..n} containing none of their own non-singleton nonzero nonnegative linear combinations are:

%e {1} {1} {1} {1} {1} {1}

%e {2} {2} {2} {2} {2}

%e {3} {3} {3} {3}

%e {2,3} {4} {4} {4}

%e {2,3} {5} {5}

%e {3,4} {2,3} {6}

%e {2,5} {2,3}

%e {3,4} {2,5}

%e {3,5} {3,4}

%e {4,5} {3,5}

%e {3,4,5} {4,5}

%e {4,6}

%e {5,6}

%e {3,4,5}

%e {4,5,6}

%e a(n) is also the number of nonempty subsets of {1..n} containing all of their own nonzero nonnegative linear combinations <= n. For example the a(1) = 1 through a(6) = 15 subsets are:

%e {1} {2} {2} {3} {3} {4}

%e {1,2} {3} {4} {4} {5}

%e {2,3} {2,4} {5} {6}

%e {1,2,3} {3,4} {2,4} {3,6}

%e {2,3,4} {3,4} {4,5}

%e {1,2,3,4} {3,5} {4,6}

%e {4,5} {5,6}

%e {2,4,5} {2,4,6}

%e {3,4,5} {3,4,6}

%e {2,3,4,5} {3,5,6}

%e {1,2,3,4,5} {4,5,6}

%e {2,4,5,6}

%e {3,4,5,6}

%e {2,3,4,5,6}

%e {1,2,3,4,5,6}

%e (End)

%t Table[Length[Select[Subsets[Range[n],{1,n}],SubsetQ[#,Select[Plus@@@Tuples[#,2],#<=n&]]&]],{n,10}] (* _Gus Wiseman_, Jun 07 2019 *)

%Y Cf. A007865, A050291, A051026, A085489, A139384, A151897, A308546.

%Y Cf. A326020, A326076, A326080, A326083, A326114.

%K nonn

%O 1,2

%A _Jeffrey Shallit_, Mar 23 2005

%E More terms from _David Wasserman_, Apr 16 2008