login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Semiprimes of the form p^2 + q^2, where p and q are primes.
2

%I #15 Nov 04 2017 06:58:23

%S 34,58,74,146,178,194,218,298,314,365,386,458,482,533,538,554,698,818,

%T 866,965,1082,1202,1322,1418,1538,1658,1685,1706,1853,1858,1874,2018,

%U 2042,2138,2218,2234,2258,2498,2642,2813,2818,2858,2978,3098,3218,3338

%N Semiprimes of the form p^2 + q^2, where p and q are primes.

%C p and q must be distinct, otherwise p^2 + q^2 = 2*p*p has three prime factors. - _Klaus Brockhaus_

%C Even terms are 2*A103739. - _Robert Israel_, Nov 03 2017

%H Robert Israel, <a href="/A103558/b103558.txt">Table of n, a(n) for n = 1..10000</a>

%e 34 is a term because 3^2 + 5^2 = 34 = 2*17; 58 is a term because 3^2 + 7^2 = 58 = 2*29; 74 is a term because 5^2 + 7^2 = 74 = 2*37.

%p N:= 10000: # to get all terms <= N

%p P:= select(isprime, [$1..floor(sqrt(N))]):

%p Res:= NULL:

%p for i from 1 to nops(P) do

%p for j from 1 to i-1 do

%p r:= P[i]^2 + P[j]^2;

%p if r > N then break fi;

%p if numtheory:-bigomega(r) = 2 then Res:= Res, r fi;

%p od od:

%p sort(convert({Res},list)); # _Robert Israel_, Nov 03 2017

%t fQ[n_] := Plus @@ Last /@ FactorInteger[n] == 2; Select[ Sort[ Flatten[ Table[ Prime[p]^2 + Prime[q]^2, {p, 16}, {q, p - 1}]]], fQ[ # ] &] (* _Robert G. Wilson v_, Mar 23 2005 *)

%o (PARI) {m=53;v=[];forprime(p=2,m, forprime(q=nextprime(p+1),m,if(bigomega(k=p^2+q^2)==2, v=concat(v,k))));v=vecsort(v);stop=nextprime(m+1)^2;for(j=1,length(v),if(v[j]<stop,print1(v[j],",")))} \\ _Klaus Brockhaus_

%Y Cf. A001358, A006881, A103739.

%K easy,nonn

%O 1,1

%A _Giovanni Teofilatto_, Mar 23 2005

%E More terms from _Klaus Brockhaus_ and _Robert G. Wilson v_, Mar 23 2005